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1. Introduction 

Recently, compressive sensing (CS) has been 
attracting in many fields. This method can 
reconstruct signals using a small number of 
measurements by assuming sparsity of data in a 
suitable bases [1]. It has already been applied to 
magnetic resonance imaging (MRI) and X-ray 
computed tomography (CT), enabling high-speed 
projection while maintaining image quality. In 
medical ultrasound images, researches have 
investigated to reduce the number of elements and to 
improve the image quality without increasing the 
number of measured data [2,3]. 

    In CS, if the target is non-sparse, it is 
necessary to transform bases into others to obtain a 
sparse representation of the observation signal. Some 
signals can sparsify using Fourier transform (FT), 
discrete cosine transform (DCT), wavelet transform 
and so on [4]. However, some signals like ultrasound 
echo from  human body, cannot be transformed into 
sparse using these traditional bases.  

    In this paper, the combination of DCT and 
wavelet transform was used. By using redundant 
bases, it is possible to make coefficients containing 
many zero components. If length of observed signal 
data is smaller than that of the bases, this base is 
called overcomplete dictionary (OD) [5,6,7]. To 
evaluate the sparsity, the L0 and L1 norms of the 
coefficients obtained using several sets of bases were 
measured. 
 
2. Method 

In this study, L1 norms of the coefficients with 
various sparse matrix were measured.  

CS method, assuming a signal 𝑥𝑥 ∈ ℝ$ is 
sparse, it can be recovered from its measurements 
𝑦𝑦 ∈ ℝ&  (𝑀𝑀 < 𝑁𝑁) with high probability [1,8]. 

𝒚𝒚 = 𝚽𝚽𝒙𝒙 (1) 
where Φ ∈ ℝ$×$  is random with average of zero 
and 𝜎𝜎  of 1/√𝑀𝑀 , and called the measurement 
matrix. Even if the signal is non-spars, it can be 
represented sparsely in a certain basis. 

𝒙𝒙 = 𝚿𝚿𝒗𝒗 (2)       
where 𝑣𝑣 ∈ ℝ:is sparse representation of 𝑥𝑥. Its L0 
norm 	𝑠𝑠 , which is the number of nonzero entries, 

become smaller than	𝑀𝑀. In this study, a combination 
of DCT and Haar bases was prepared as the sparse 
representation 	Ψ ∈ ℝ$×: , and it is called the 
overcomplete dictionary. Subsequently, substituting 
eq. (2) into eq. (1), we can obtain  

𝒚𝒚 = 𝚽𝚽𝚿𝚿𝒗𝒗 = 𝑨𝑨𝒗𝒗 (3) 
where 𝐴𝐴 ∈ ℝ&×:. Observed signal 𝑦𝑦 must include 
additive noise, eq. (3) can be recast as  
 
 

𝒚𝒚 = 𝑨𝑨𝒗𝒗 + 𝒆𝒆 (4) 
where 𝑒𝑒 ∈ ℝ$ represents noise. 
The sparsest solution 𝑣𝑣E of eq. (4) is obtained by L1 
optimization expressed as below 

𝒗𝒗F = min‖𝒗𝒗‖𝟏𝟏	s.t.	‖𝒚𝒚 − 𝑨𝑨𝒗𝒗‖𝟐𝟐𝟐𝟐 ≤ 𝒆𝒆. (5)  
When sparse coefficient 𝑣𝑣  is obtained in eq. (5), 
solution 𝑥𝑥 is derived using eq. (2). 

In this study, several types of sparse matrix for 
Ψ  in eq. (3) were prepared and evaluated: the 
discrete cosine transformation (DCT) basis, the Haar 
basis, and an overcomplete dictionary using the DCT 
and the Haar, which is called DH basis (ΨST ∈
ℝ$×U$).  

Since both the DCT and the Haar bases are 
regular matrices, the coefficients 𝑣𝑣 can be obtained 
by taking the inverse matrix of each base matrix. 

𝒗𝒗𝑫𝑫𝑫𝑫𝑫𝑫 = 𝚿𝚿𝑫𝑫𝑫𝑫𝑫𝑫
Y𝟏𝟏 𝒙𝒙 (6) 

𝒗𝒗𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 = 𝚿𝚿𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯
Y𝟏𝟏 𝒙𝒙. (7) 

While, when using the DH basis, eq. (2) becomes 
underdetermined. To solve this problem, least 
absolute shrinkage and selection operator (lasso) [9] 
algorithm was used as below.  

min‖𝒚𝒚𝑫𝑫𝑯𝑯‖𝟏𝟏		s.t.	𝒚𝒚𝑫𝑫𝑯𝑯 = 𝚿𝚿𝑫𝑫𝑯𝑯𝒗𝒗𝑫𝑫𝑯𝑯 (8) 
L1 norm 𝑙𝑙a and L0 norm 𝑙𝑙b of the coefficients can 
be obtained by the following eqs.  

𝒍𝒍𝟏𝟏 = d|𝒚𝒚𝒊𝒊| (9) 

𝒍𝒍𝟎𝟎 = d𝜹𝜹(𝒚𝒚𝒊𝒊) (10) 

𝜹𝜹(𝑯𝑯) = k𝟏𝟏	
(𝑯𝑯 ≠ 𝟎𝟎)

𝟎𝟎	(𝑯𝑯 = 𝟎𝟎) .
(11) 

The smaller L1 norm of the coefficients is, sparser	𝑣𝑣 
is. Therefore, it is considered to be an appropriate 
basis for 𝑥𝑥. 

Our goal is to reconstruct the fine signal from 
fewer measurements. In this study, the measurement 
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signal was prepared by decimating the fine signal. 
Finding the proper basis for medical ultrasound 
signals to be sparse representable will allow the 
application of CS. 
 
3. Results 

To obtain the measurement signal 𝑦𝑦 , a 
numerical simulation FIELD II was used.  In this 
simulation, a phantom for a left kidney is scanned 
with a 7 MHz 128 element convex phased array 
transducer, and 128 lines with 0.7 degrees between 
lines are obtained. An example of the measured 
signals is shown in Fig. 1. This signal was 
transformed into DCT, Haar, and DH, separately. 
The calculated coefficients from the signal of Fig. 1 
are shown in Figs. 2, 3, and 4, respectively. Averages 
of L1/L0-norms with various bases are listed in 
Table. I. It is clear that the L1 norm of DH basis was 
3.3 and significantly smaller than those of DCT and 
Haar. 

 

 
Fig. 1  RF signal from kidney in time domain. 

 
Fig. 2  Coefficients of DCT (N=1024) 

 
Fig. 3  Coefficients of Haar (N=1024) 

 
Fig. 4  Coefficients of DH (N=2048) 

 
Table I. L1/L0-norms. 

 
DCT Haar DH 

L1-norm 24.7 31.4 3.3 

L0-norm 1024.0 1002.0 55.5 

 
4. Conclusion 

To obtain sparser representation of medical 
ultrasound signal, the overcomplete dictionary using 
DCT and Haar bases was investigated. The 
numerical simulation was conducted and the result 
shows that sparser L1 norm was obtained using the 
OD. In future work, a set of signals for a whole 
image will be applied simultaneously. 
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