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1. Introduction

Recently, compressive sensing (CS) has been
attracting in many fields. This method can
reconstruct signals using a small number of
measurements by assuming sparsity of data in a
suitable bases [1]. It has already been applied to
magnetic resonance imaging (MRI) and X-ray
computed tomography (CT), enabling high-speed
projection while maintaining image quality. In
medical ultrasound images, researches have
investigated to reduce the number of elements and to
improve the image quality without increasing the
number of measured data [2,3].

In CS, if the target is non-sparse, it is
necessary to transform bases into others to obtain a
sparse representation of the observation signal. Some
signals can sparsify using Fourier transform (FT),
discrete cosine transform (DCT), wavelet transform
and so on [4]. However, some signals like ultrasound
echo from human body, cannot be transformed into
sparse using these traditional bases.

In this paper, the combination of DCT and
wavelet transform was used. By using redundant
bases, it is possible to make coefficients containing
many zero components. If length of observed signal
data is smaller than that of the bases, this base is
called overcomplete dictionary (OD) [5,6,7]. To
evaluate the sparsity, the LO and L1 norms of the
coefficients obtained using several sets of bases were
measured.

2. Method

In this study, L1 norms of the coefficients with
various sparse matrix were measured.

CS method, assuming a signal x € RV is
sparse, it can be recovered from its measurements
y € RM (M < N) with high probability [1,8].

y = ®x €))
where ® € RV*N is random with average of zero
and ¢ of 1/YM, and called the measurement
matrix. Even if the signal is non-spars, it can be
represented sparsely in a certain basis.

x=%Yv (2)
where v € RPis sparse representation of x. Its LO
norm s, which is the number of nonzero entries,
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become smaller than M. In this study, a combination
of DCT and Haar bases was prepared as the sparse
representation W € RN*P | and it is called the
overcomplete dictionary. Subsequently, substituting
eq. (2) into eq. (1), we can obtain

y = ®¥v = Av 3
where A € RM*P_ Observed signal y must include
additive noise, eq. (3) can be recast as

y=Av+e (4)
where e € R represents noise.
The sparsest solution ¥ of eq. (4) is obtained by L1
optimization expressed as below
? = min||v||; st. |ly — Av||% <e. (5)
When sparse coefficient v is obtained in eq. (5),
solution x is derived using eq. (2).

In this study, several types of sparse matrix for
Y in eq. (3) were prepared and evaluated: the
discrete cosine transformation (DCT) basis, the Haar
basis, and an overcomplete dictionary using the DCT
and the Haar, which is called DH basis (WYpy €
]RNXZN).

Since both the DCT and the Haar bases are
regular matrices, the coefficients v can be obtained
by taking the inverse matrix of each base matrix.

vpcr = YperX (6)

VHaar = lpl;;arx' (7)

While, when using the DH basis, eq. (2) becomes

underdetermined. To solve this problem, least

absolute shrinkage and selection operator (lasso) [9]

algorithm was used as below.

min|lypylly st ypu = YpuVpn (8)

L1 norm l; and LO norm [, of the coefficients can
be obtained by the following egs.

L= Z|)’i| 9)

o= 80 (10)
_(1(a#0)
5my_&(a:0y 11

The smaller L1 norm of the coefficients is, sparser v
is. Therefore, it is considered to be an appropriate
basis for x.

Our goal is to reconstruct the fine signal from
fewer measurements. In this study, the measurement
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signal was prepared by decimating the fine signal.
Finding the proper basis for medical ultrasound
signals to be sparse representable will allow the
application of CS.

3. Results

To obtain the measurement signal y, a
numerical simulation FIELD II was used. In this
simulation, a phantom for a left kidney is scanned
with a 7 MHz 128 element convex phased array
transducer, and 128 lines with 0.7 degrees between
lines are obtained. An example of the measured
signals is shown in Fig. 1. This signal was
transformed into DCT, Haar, and DH, separately.
The calculated coefficients from the signal of Fig. 1
are shown in Figs. 2, 3, and 4, respectively. Averages
of L1/L0-norms with various bases are listed in
Table. I. It is clear that the L1 norm of DH basis was
3.3 and significantly smaller than those of DCT and
Haar.
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Fig. 1 RF signal from kidney in time domain.
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Fig. 2 Coefficients of DCT (N=1024)
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Fig. 3 Coefficients of Haar (N=1024)
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Fig. 4 Coefficients of DH (N=2048)

Table I. L1/L0-norms.

DCT Haar DH

Ll-norm 24.7 314 33

LO-norm | 1024.0 1002.0 55.5

4. Conclusion

To obtain sparser representation of medical
ultrasound signal, the overcomplete dictionary using
DCT and Haar bases was investigated. The
numerical simulation was conducted and the result
shows that sparser L1 norm was obtained using the
OD. In future work, a set of signals for a whole
image will be applied simultaneously.
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