Simultaneous measurement of gas concentration and temperature by the ball SAW sensor

Kazushi Yamanaka 1,2, Shingo Akao 1,2, Nobuo Takeda 1,2, Toshihiro Tsuji 1, Toru Oizumi 1 and Yusuke Tsukahara 1,2 (1Tohoku Univ., 2Ball Wave Inc.)

1. Introduction

Since the sensitivity of a piezoelectric gas sensor depends on the temperature, measured gas concentration is disturbed when the temperature is largely changed. However, it is not easy to measure the sensor temperature, when it is not possible to insert a thermometer into the sensor cell. We have developed the ball surface acoustic wave (SAW) sensor [1] and applied it to trace moisture sensor [2,3], but had the same problem. To solve this problem, we developed a method to simultaneously measure the temperature and gas concentration, using a ball SAW sensor operated at two frequencies [4].

2. Measurement principle

Typical ball SAW sensor cell is shown in Fig.1. The gas flow rate \(\nu \) is typically 1.0 to 0.1 mL/min. The ball temperature is controlled using a Peltier element and a thermister inserted into the Peltier holder. Due to the need to prevent leakage of the cell, it is not possible to insert a thermometer into the cell.

Fig. 1 Cell of ball SAW trace moisture sensor

Relative delay time change (DTC)

\[\Delta t_1 = \Delta \tau_1 / \tau_1 \] at frequency \(f_1 \) and

\[\Delta t_2 = \Delta \tau_2 / \tau_2 \] at frequency \(f_2 \), are given by

\[\Delta t_1 = B(T) f_2 G(w) + A_1 (T - T_{REF}) \] (1)

\[\Delta t_2 = B(T) f_2 G(w) + A_2 (T - T_{REF}) \] (2)

where \(B(T) \) is the sensitivity factor, \(w \) is gas concentration, \(G(w) \) is a function of \(w \). \(T \) is the sensor temperature, \(T_{REF} \) is the reference temperature, and \(A_1 \), \(A_2 \) are temperature coefficients at frequencies \(f_1 \) and \(f_2 \).

From eqs. (1) and (2), we obtain DTC due to gas concentration,

\[\Delta t_{y} = \Delta t_2 - C \Delta t_1 = \frac{(f_2 - C f_1) B(T) G(w)}{f_1 - f_2} \] (3)

and DTC due to temperature (temperature term)

\[\Delta t_T = A_1 (T - T_{REF}) \] (4)

where \(C = A_2 / A_1 \) is temperature coefficient ratio (TCR). The ball temperature \(T \) and gas concentration \(w \) are given by eqs. (4) and (3), respectively.

3. Calibration of temperature

Using a sol-gel silica film trace moisture sensor[3] with \(f_2 = 3 f_1 \), TCR was determined as \(C = 0.9875 \) by a least square fitting of \(\Delta t_2 \) against \(\Delta t_1 \). The temperature term \(\Delta t_T \) was plotted in Fig.2. as a function of the ball temperature \(T \) by changing the setting of the Peltier element. Here the ball temperature \(T \) was assumed to be identical to the Peltier holder temperature \(T_{ch} \) when the gas flow rate \(\nu \) is zero. The slope was \(A_1 = -24.25 \) ppm/°C.

Substituting \(A_1 \) and \(T_{REF} = 24.06 \) °C into eq. (4), ball temperature is calculated as

\[T = 24.06 - 0.0412 \Delta t_T \] (5)

The error of other temperatures calculated using eq. (5) was evaluated to be less than 0.24 %.

4. Evaluation of heat capacity of sensor cell

To evaluate the effect of heat capacity of the cell, the ball temperature \(T \) was compared with the Peltier holder temperature \(T_{ch} \) measured by the thermistor, as shown in Fig. 3. When the setting of Peltier was changed from 34°C to 24°C, \(T \) was delayed by 0.5 min from \(T_{ch} \) and did not reach 24°C even after 3 min. It shows a large heat capacity of the stainless steel base plate.
5. Water concentration measurement under varying temperature

The water concentration \(w \) in N\(_2\) gas flow was changed by the sequence of 1.3 \(\rightarrow \) 234 \(\rightarrow \) 590 \(\rightarrow \) 1.3 \(\rightarrow \) 1180 \(\rightarrow \) 1.3 ppbv, evaluated using the cavity ring down spectroscopy (CRDS) as in [3]. At the same time, the temperature was changed between 24\(^\circ \)C and 14 \(^\circ \)C using the Peltier element. The DTC \(\Delta tW \) due to water was measured as shown by the blue curve in Fig. 4(a) and Table I. The ball temperature \(T \) shown by the red curve precisely reproduced the temperature setting, not disturbed by the water concentration change, showing validity of eq. (4).

Using the DTC \(\Delta tW \) in Table I, right hand side terms of eq.(3) were evaluated as

\[
(f_2 - C_f)B(T) = a \exp\left[\frac{\Delta \varepsilon}{k_b(T + 273)} \right]
\]

(6)

with \(a = -6.33 \times 10^{-6} \), \(\Delta \varepsilon = 0.271 \) (eV), \(k_b = 8.617 \times 10^{-5} \) eV/K (Bolzmann Constant) [5] and

\[
G(w) = \sqrt{w} \quad \text{(e.g.}[2,3])
\]

(7).

Substituting eqs. (6) and (7) into eq.(3), we obtain

\[
w = (\Delta tW / a)^2 \exp\left[-2\Delta \varepsilon / k_b(T + 273) \right]
\]

(8),

where \(T \) is given by eq. (5). As shown in Fig.4(b), the concentration \(w \) almost correctly reproduced the set values in the sequence. Therefore, the concentration measurement under varying temperature was successfully demonstrated.

In Fig. 5, narrow time range for the transient from 1.3 to 1180 ppbv is shown. Though the DTC \(\Delta tW \) (blue curve) in Fig. 5(a) showed a complex behavior due to the change of water concentration and ball temperature (red curve), the water concentration in Fig. 5 (b) almost correctly reproduced the set value. The variation of concentration near temperature jumps is a subject of further study, though it might be due to adsorption/desorption of water from cell and piping.

6. Conclusions

We developed a method to simultaneously measure the temperature and gas concentration with ball SAW sensor. When the temperature had a large jump, the delay time change was significantly disturbed, but the water concentration was almost correctly measured. This method will make ball SAW sensor reliable under varying temperature.

This work was supported by Program for Creating STart-ups from Advanced Research and Technology (START).

References

5. Y. Tsukahara et al., TEMPMEKO 2016, O12.12, p.266, Zakopane, Poland (2016)