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1. Introduction 

Lanthanum (La) is the first metal of the 
lanthanoid, which includes Ce, Pr, Nd, Yb, and so 
on. La exhibits the double hexagonal closed packed 
(dhcp) structure (-La) below 600 K, the face 
centered cubic (fcc) structure (-La) between 600 
and 1140 K, and the body centered cubic (bcc) 
structure (-La), as shown in Fig. 1. Since the 
energy of -La and -La is close, -La can exist 
below 600 K as a meta-stable phase.[1, 2] The dhcp 
structure consists of ABAC… layers the along 
[0001] direction, whereas the fcc structure consists 
of ABC… layers along the [111] direction. Stassis 
et al. measured the elastic constants of 
monocrystalline -La by the neutron scattering 
method.[3] However, those of -La have never been 
measured. Thus, acoustic properties of -La remain 
unclear although Lanthanum composites are widely 
used in many applications such as LaNi5 for 
hydrogen automobiles, LaB6 for electronic 
microscopes, La2O3 for optics for infrared 
absorbing glass.

Electronic structures of La largely affect its 
physical properties. La has two 6s electrons, one 5d 
electron, and no f electrons. It also has a high 
density of state at the Fermi level. These feathers 
lead to unusual physical properties such as 
relatively high superconductive transition 
temperature of 5–6 K at ambient pressure,[4] which 
reaches 13 K at 20 GPa. [5] The pressure dependence 
of sound velocities also shows anomalies,[6] where 

the contribution of the electronic structure is of 
interest due to a strong electron-phonon coupling 
and s-d band transition. For example, elastic 
constants of Pd and Pt show unusual temperature 
dependence due to 4d electrons.[7, 8] 

In this study, we calculate the elastic 
constants and sound velocities of -La and -La 
based on the density functional theory, and discuss 
wave-propagation properties, anisotropy, and their 
pressure dependence.
 
2. Calculation 

We used the Vienna ab-initio simulation 
package (VASP), using several types of generalized 
gradient approximation (GGA-PBE)[9, 10] potentials 
and local density approximation (LDA)[11] 
potentials. The cutoff energy of plane wave 
function is 1300 eV. We applied the 
Methfessel-Paxton scheme with the width of 1–1 
eV for the partial occupation of electrons, and the 
k-point mesh is from 8×8×8 to 40×40×40 made 
by the Monkhorst pack. 

First, we calculate the total energy and 
volume for each calculation condition, and 
determine the lattice constants. The elastic 
constants are calculated through the strain-energy 
relationships by applying ±1% strains for several 
deformation modes. We also change the volume to 
calculate the pressure dependence of the elastic 
constants. 
 
3. Result 

First, we calculated the lattice constants a and 

Fig. 1 The structures of (a) dhcp -La and (b) fcc
-La.
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Fig. 2 The difference between the reported and
calculated lattice constants a and c of -La using
severalpotentials.
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4. Measurement system 
BRS measurements were performed by a 

tandem Fabry-Pérot interferometer (JRS Instruments) 
using a solid laser (mpc3000, Laser Quantum, 532 
nm). The actual diameter of the focused laser beam in 
the sample was approximately 50 m. The laser 
power near the sample was 240 mW. 

In this measurement, 180º and 90R scattering 
geometries shown in Fig.2 were used to investigate 
the refractive index and the longitudinal wave 
velocity in the thickness direction of the samples. In 
these scattering geometries, the acoustic wave 
velocity are obtained using the following equations:  
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Here, i is the wavelength of the incident light, n is 
refractive index, ’/2 is scattering angle, f 180 is the 
shift frequency of 180º Brillouin scattering peak 
owing to the longitudinal wave and f L

90R is the shift 
frequency of 90R Brillouin scattering peaks owing 
to the longitudinal wave. 

In this measurement, the refractive index is 
treated as the ordinary refractive index n⊥ because 
the crystalline axis of c-plane ZnO single crystal is 
perpendicular to the polarization of the incident 
light. Therefore, the ordinary refractive index n⊥ is 
obtained from the following equation: 
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However, the ordinary refractive index 

measured by this technique has large uncertainty. 
Therefore, the value was estimated by linear fitting 
of the temperature characteristics of the indices. 

From this ordinary refractive index and equation 
(2), the longitudinal wave velocity was estimated. 
 
5. Results and discussion 

Figure 3 shows the longitudinal wave velocity 
of c-plane ZnO single crystal measured in the range 
of 0.007-10 m. A linear velocity changes due to 
heating was subtracted from experimental data by 
using temperature coefficient of c331.23×10-2 
GPa/ºC [5]. In addition, the theoretical curve 
calculated by Spector’s equation [6] with the effect 
of carrier diffusion was also plotted. From the 
experimental data, the longitudinal wave velocity 
increased as the resistivity increased showing an 
empirical curve. However, in comparision with the 
theoritecal curve, the measured curve showed a 
characteristic shift. This difference seems to result 
from the properties used in the theoretical 
estimation, especially dielectric property. 

 
 
 
 
 
 
 

 
Fig. 2 (a) 180º scattering geometry and (b) 90R scattering 

geometry: Wave vector of incident light. ks
180: Wave 

vector of scattered light. q180: Wave vector of 
phonon. ki

90R: Wave vector of incident light. ks
90R: 

Wave vector of scattered light. q90R: Wave vector of 
phonon.’: Scattering angle which is defined by 
the incident light and the scattered light. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Longitudinal wave velocity of the ZnO single 

crystal measured in the range of 0.007-10 m. The 
resistivity of the crystals changed by heating. The 
change of the elastic constant c33 due to heating was 
excluded [5]. Also described is the theoretical curve 
at 50 GHz, calculated by Spector’s equation [6]. 

  
6. Conclusion 

We have succeeded in the observation of the 
longitudinal wave velocity change due to the 
piezoelectric stiffening in c-plane ZnO single 
crystales. However, we could not determine the 
electromechanical coupling coefficient k33 because 
the resistivity range of velocity dispersion becomes 
wider in the low-resistive materials. 

This result suggests that the electromechanical 
coupling coefficient k33 can be estimated by using 
the combination of 180º and 90R scattering 
geometries if the sample resistivity changes widely. 
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c of -La using GGA and LDA potentials with a 10
×10×10 k-point mesh and 0.1-eV width smearing. 
All of the GGA potentials provide good agreement 
with measurement values[12] whereas LDA 
potentials underestimate them by ~5% as shown in 
Fig. 2. Elastic constants calculated by GGA also 
agree with measurement values[13] within 5% as 
shown in Fig. 3. On the other hand, LDA fail to 
provide proper results. 

Second, we calculate the elastic constants of 
-La using a GGA, and evaluate the anisotropy. 
Ranganathan and Starzewski defined the universal 
elastic anisotropy index AU = 5GV/GR+BV/BR-6 (>0), 
where G and B are the shear and bulk moduli, and 
subscribes of V and R mean Voigt and Reuss 
approximations, respectively.[14] We plot AU of 
several hexagonal materials for the c/a ratio in Fig. 
4. Here, La, Nd, and Pr are plotted for c/2a since 
they show the dhcp structure. We find that -La 
exhibits relatively large anisotropy among 
hexagonal materials. (Note that, Cd, Zn, and Tl has 
much larger AU of 1–2.) 

The large anisotropy of -La is also 
represented by a polar velocity curve. We calculate 
the phase velocities in the x-z plane of -La (AU 
=0.16) and Mg (AU =0.04) as shown in Fig. 5. The 
two shear velocities propagating [101] direction of 
Mg show 8.4% difference, whereas those of -La 
show 17% difference. The difference between the 
fastest and slowest longitudinal velocities in the x-z 
plane of Mg and -La are 4.7 and 11%, 
respectively. 
 
4. Conclusion 

We calculated the lattice constants and elastic 
constants of -La by the ab-initio method, and 
found that GGA provides proper values. Our 
calculation results indicate that -La exhibits 
relatively large velocity anisotropy among 
hexagonal materials. We will discuss its pressure 
dependence in further calculations.
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Fig. 3 The difference between the reported and
calculated elastic constants of -La using several
potentials.
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Fig. 4 The universal anisotropy index 𝐴𝐴𝑈𝑈 of
hexagonal materials.
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Fig. 5 Polar velocity curves in the 𝑥𝑥-𝑧𝑧 plane of (a)
-La and (b) Mg.
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