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Wave-propagation properties
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1. Introduction

Lanthanum (La) is the first metal of the
lanthanoid, which includes Ce, Pr, Nd, Yb, and so
on. La exhibits the double hexagonal closed packed
(dhcp) structure (a-La) below 600 K, the face
centered cubic (fcc) structure (B-La) between 600
and 1140 K, and the body centered cubic (bcc)
structure (y-La), as shown in Fig. 1. Since the
energy of a-La and B-La is close, B-La can exist
below 600 K as a meta-stable phase.l"? The dhcp
structure consists of ABAC... layers the along
[0001] direction, whereas the fcc structure consists
of ABC... layers along the [111] direction. Stassis
et al. measured the elastic constants of
monocrystalline -La by the neutron scattering
method.’! However, those of a-La have never been
measured. Thus, acoustic properties of a-La remain
unclear although Lanthanum composites are widely
used in many applications such as LaNis for
hydrogen automobiles, LaB¢ for electronic
microscopes, La,O; for optics for infrared
absorbing glass.

Electronic structures of La largely affect its
physical properties. La has two 6s electrons, one 54
electron, and no f electrons. It also has a high
density of state at the Fermi level. These feathers
lead to wunusual physical properties such as
relatively ~ high  superconductive  transition
temperature of 5-6 K at ambient pressure,*) which
reaches 13 K at 20 GPa. ™ The pressure dependence
of sound velocities also shows anomalies,® where
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Fig. 1 The structures of (a) dhcp a-La and (b) fcc
B-La.

the contribution of the electronic structure is of
interest due to a strong electron-phonon coupling
and s-d band transition. For example, elastic
constants of Pd and Pt show unusual temperature
dependence due to 4d electrons.[”-*

In this study, we calculate the elastic
constants and sound velocities of a-La and -La
based on the density functional theory, and discuss
wave-propagation properties, anisotropy, and their
pressure dependence.

2. Calculation

We used the Vienna ab-initio simulation
package (VASP), using several types of generalized
gradient approximation (GGA-PBE)" ' potentials
and local density approximation (LDA)!!
potentials. The cutoff energy of plane wave
function is 1300 eV. We applied the
Methfessel-Paxton scheme with the width of 1p-—1
eV for the partial occupation of electrons, and the
k-point mesh is from 8 X 8 X 8 to 40 X40 X 40 made
by the Monkhorst pack.

First, we calculate the total energy and
volume for each calculation condition, and
determine the lattice constants. The elastic
constants are calculated through the strain-energy
relationships by applying = 1% strains for several
deformation modes. We also change the volume to
calculate the pressure dependence of the elastic
constants.

3. Result

First, we calculated the lattice constants a and
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Fig. 2 The difference between the reported and
calculated lattice constants @ and ¢ of a-La using
several potentials.
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Fig. 3 The difference between the reported and
calculated elastic constants of o.-La using several
potentials.

¢ of a-La using GGA and LDA potentials with a 10
X 10X 10 k-point mesh and 0.1-eV width smearing.
All of the GGA potentials provide good agreement
with measurement values!'?)  whereas LDA
potentials underestimate them by ~5% as shown in
Fig. 2. Elastic constants calculated by GGA also
agree with measurement values!®! within 5% as
shown in Fig. 3. On the other hand, LDA fail to
provide proper results.

Second, we calculate the elastic constants of
o-La using a GGA, and evaluate the anisotropy.
Ranganathan and Starzewski defined the universal
elastic anisotropy index 4Y= 5Gy/Gr+By/Bgr-6 (>0),
where G and B are the shear and bulk moduli, and
subscribes of V and R mean Voigt and Reuss
approximations, respectively.!'! We plot 4Y of
several hexagonal materials for the c/a ratio in Fig.
4. Here, La, Nd, and Pr are plotted for ¢/2a since
they show the dhcp structure. We find that a-La
exhibits relatively large anisotropy among
hexagonal materials. (Note that, Cd, Zn, and T1 has
much larger 4Y of 1-2.)

The large anisotropy of o-La is also
represented by a polar velocity curve. We calculate
the phase velocities in the x-z plane of a-La (4Y
=0.16) and Mg (4" =0.04) as shown in Fig. 5. The
two shear velocities propagating [101] direction of
Mg show 8.4% difference, whereas those of a-La
show 17% difference. The difference between the
fastest and slowest longitudinal velocities in the x-z

plane of Mg and oa-La are 4.7 and 11%,
respectively.
4. Conclusion
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Fig. 4 The universal anisotropy index AV of
hexagonal materials.
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Fig. 5 Polar velocity curves in the z-z plane of (a)
a-La and (b) Mg,

We calculated the lattice constants and elastic
constants of a-La by the ab-initio method, and
found that GGA provides proper values. Our
calculation results indicate that a-La exhibits
relatively large velocity anisotropy among
hexagonal materials. We will discuss its pressure
dependence in further calculations.
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