Evaluation of Piezoelectric Ta₂O₅ Thin Films Deposited on Ta Oxide Film

Ta酸化膜上への圧電性 Ta₂O₅薄膜の成膜と評価

Shunsuke Iwamoto[†] and Shoji Kakio (Univ. of Yamanashi) 岩本 俊介[†], 垣尾 省司 (山梨大院・医工)

1. Introduction

An X-axis-oriented tantalum pentoxide (Ta_2O_5) piezoelectric thin film has a strong piezoelectric property and a high dielectric constant.¹ However, there is a problem that a large propagation loss for the Rayleigh-type SAW (R-SAW) or bulk wave occurs in the oriented Ta_2O_5 thin films.^{2,3}

By utilizing the single crystallization of Ta_2O_5 thin films, a reduction in propagation loss can be expected. In the deposition of Ta₂O₅ thin films using an RF magnetron sputtering system with a long-throw sputter (LTS) cathode, we repoted that a hexiagonal Ta₂O₅ (called the δ phase, δ -Ta₂O₅⁴) thin film with (203) orientation was produced on c-plane sapphire $(c-Al_2O_3)$ by epitaxial growth.⁵ However, since δ -Ta₂O₅ belongs to the 6/mmm point group without piezoelectricity, no increase in coupling factor and no major improvement in propagation loss were observed.⁵ On the other hand, Gnanarajan and Lam reported that an epitaxial orthorhombic twinned Ta₂O₅ film with (201) orientation was fabricated by the low-pressure thermal oxidation of epitaxial tantalum (Ta) films on the R-plane of sapphire $(R-Al_2O_3)$ substrates.⁶ However, the piezoelectricity and SAW properties were not evaluated.

In this study, for the R-Al₂O₃ substrate, homoepitaxial growth of the Ta₂O₅ thin film using an oxide Ta thin film (TaO_x) as a buffer layer was examined, and the crystalline and R-SAW propagation properties of the thin films were evaluated.

2. Sample Fabrication

The sample was fabricated using the RF magnetron sputtering system. First, a metal Ta thin film with a thickness of 70 nm was deposited on the R-Al₂O₃ substrate in an atmosphere gas of only Ar (30 ccm) at 700 °C, and the metal Ta thin film was oxidized in the chamber in an atmosphere gas of Ar and O₂ (30:10 ccm) for 10 min at 700 °C. Next, the Ta₂O₅ film was deposited on the TaO_x thin film for 6 h at 700 °C under similar sputtering conditions to those in the previous report⁵. The total film thickness *h* was 3.0 µm.

Fig. 1 XRD patterns of Ta_2O_5 thin films deposited on $TaO_x/R-Al_2O_3$, $R-Al_2O_3$, $c-Al_2O_3$.

3. Evaluation of Crystallization

First, the degree of orientation was evaluated from X-ray diffraction (XRD) patterns using a CuK α X-ray source. **Figure 1** shows the XRD pattern of the Ta₂O₅/TaO_x/*R*-Al₂O₃ sample and the plane directions of orthorhombic Ta₂O₅ (called the β phase, β -Ta₂O₅). For comparison, the XRD patterns of the Ta₂O₅ thin films with *h* of 3.0 µm deposited on *R*-Al₂O₃ and *c*-Al₂O₃ substrates without buffer layer using the same sputtering conditions (800 °C) were also shown in Fig. 1.

The preferential (200) orientation was observed for each sample. On the other hand, for the Ta₂O₅/TaO_x/*R*-Al₂O₃ sample, a peak at approximately 2θ =37° was observed. There was no peak at approximately 37° for the Ta₂O₅/*R*-Al₂O₃ sample without buffer layer. A peak at approximately 37° of the Ta₂O₅/*c*-Al₂O₃ sample without buffer layer corresponds to the diffraction angle of the (203) plane of the δ -Ta₂O₅.⁵

Next, the in-plane crystallinity of the Ta_2O_5 thin film was evaluated from transmission electron microscopy (TEM) diffraction patterns. **Figure 2** shows the TEM patterns. The *R*-Al₂O₃ sample with the TaO_x buffer layer was observed like a four-fold symmetry pattern [Fig. 2(a)]. It was different from the *R*-Al₂O₃ sample without buffer layer, in which a ring-shape pattern was observed [Fig. 2(b)]. Therefore, there is a possibility that a part of the Ta₂O₅ film was crystallized by using the TaO_x buffer layer.

g12me007@yamanashi.ac.jp

Fig. 2 TEM patterns of Ta_2O_5 thin films deposited on (a) $TaO_x/R-Al_2O_3$, (b) $R-Al_2O_3$, (c) $c-Al_2O_3$.

On the other hand, the pattern of the *R*-Al₂O₃ sample with buffer layer was also different from the *c*-Al₂O₃ sample, in which a six-fold symmetric pattern was observed [Fig. 2(c)]. Furthermore, the peak at approximately 37° in the XRD pattern of the Ta₂O₅/TaO_x/*R*-Al₂O₃ sample in Fig. 1 corresponds to the diffraction angle of the (111) and (201) planes of the β -Ta₂O₅ (2 θ =36.67°, 37.05°).

From the above results, the possibility of the homoepitaxial growth of the β -Ta₂O₅ on TaO_x buffer layer was demonstrated. However, from the bright-field image obtained by TEM, a polycrystalline structure with various grain sizes was observed in the Ta₂O₅ thin film of the Ta₂O₅/TaO_x/*R*-Al₂O₃ sample.

4. Evaluation of SAW Properties

Interdigital transducers (IDTs) with a period λ of 20 µm and 30 double-finger pairs were fabricated on the deposited film using an Al film so that the SAW propagation direction could be set as the *Y*-axis of Al₂O₃, namely, *R*-*Y* and *Z*-*Y* (*c*-plane) Al₂O₃. The propagation length between the center of the input and that of the output IDT was 80 λ .

The frequency responses of each sample with $h/\lambda=0.150$ measured using a network analyzer were shown in **Fig. 3**. The zeroth and first modes of the R-SAW were observed for the each sample. The insertion loss *IL* of the Ta₂O₅/TaO_x/*R*-Al₂O₃ sample was significantly larger than those of the samples without the TaO_x buffer layer because the Ta₂O₅ thin film deposited on the TaO_x buffer layer was a polycrystalline thin film.

Figure 4 shows the coupling factor K^2 measured from the admittance of the IDT. For the Ta₂O₅/TaO_x/*R*-Al₂O₃ sample, the enhancement of K^2 can be expected because β -Ta₂O₅ must have piezoelectricity. However, as also shown in Fig.4, the K^2 values of the Ta₂O₅/TaO_x/*R*-*Y* Al₂O₃ sample with $h/\lambda=0.150$ were approximately half that of the Ta₂O₅/*R*-*Y* sample. This was considered to be due to the polycrystalline structure of the Ta₂O₅ thin film on the TaO_x buffer layer.

On the other hand, for the first modes on *R*-*Y* and *Z*-*Y* Al₂O₃ samples, the value of K^2 of 1.8 % and the phase velocity of approximately 5,000 m/s were obtained at $h/\lambda=0.225$. Furthermore, it was found that the Ta₂O₅/*R*-*Y* Al₂O₃ samples had a

larger K^2 than the Ta₂O₅/*Z*-*Y* Al₂O₃ samples. This is because the *X*-axis-oriented Ta₂O₅ thin film and the (203)-oriented δ -Ta₂O₅ thin film were mixed in the deposited thin film on the *Z*-*Y* Al₂O₃ substrate.

5. Conclusion

For the *R*-Al₂O₃ substrate, homoepitaxial growth of the Ta₂O₅ thin film using the TaO_x buffer layer was examined, and the crystalline and R-SAW propagation properties of the thin films were evaluated. The possibility that a part of the Ta₂O₅ film was crystallized to the orthorhombic β -Ta₂O₅ with piezoelectricity due to the homoepitaxial growth was demonstrated. Unfortunately, no major improvement in propagation properties was observed upon the crystallization because the Ta₂O₅ thin film on the TaO_x buffer layer was polycrystalline structure.

References

- 1. Y. Nakagawa et al.: J. Appl. Phys. 61 (1987) 5012.
- 2. S. Kakio et al.: Jpn. J. Appl. Phys. 49 (2010) 07HB06.
- 3. S. Kakio et al.: Jpn. J. Appl. Phys. 50 (2011) 07HD09.
- A. Fukumoto and K. Miwa: Phys. Rev. B 55 (1997) 11155.
- 5. S. Iwamoto *et al.*: Jpn. J. Appl. Phys. **52** (2013) 07HD06.
- S. Gnanarajan and S. K. H. Lam: J. Vac. Sci. Technol. A 26 (2008) 494.