Properties of Miniature Ultrasonic Motor using (Sr,Ca)$_2$NaNb$_5$O$_{15}$ Piezoelectric Ceramics Under High-Input Power

(Yutaka Doshida1, Hiroyuki Shimizu1, Taisei Irieda1, Hideki Tamura2

1Taiyo Yuden Co., Ltd., 2Tohoku Institute of Technology)

Abstract

There are great demands for microactuators to miniaturize mechanical components and add high functionality in mobile equipment. Piezoelectric actuators using Pb(Zr,Ti)O$_3$ (PZT) ceramics have been partly put to practical use and many studies on ultrasonic micromotors have been carried out. As pioneering work, we succeeded in realizing a double-mode miniature cantilever-type ultrasonic motor using lead-free multilayer piezoelectric ceramics (MLPC) of (Sr,Ca)$_2$NaNb$_5$O$_{15}$ (SCNN) and the motor showed to be able to rotate by a lithium-ion cell used in the mobile equipment without an amplifier circuit. However, these miniature piezoelectric devices easily experience a large strain when subjected to a practical value of displacement. Under such a large strain, these miniature piezoelectric devices easily produce a notable degree of nonlinearity as high-power properties. Recently, SCNN ceramics exhibited the jump phenomena with hard-spring effect shown in Fig. 1 and to posses superior high-power properties than those of PZT ceramics shown in Fig. 2.

In this study, we investigated the driving properties of the motor using SCNN ceramics under high-input power by comparison of their high-power properties.

1. Introduction

2. Motor design

3. Motor characterization

References

Fig. 1. Jump phenomena under constant-voltage driving for SCNN disk.

Fig. 2. Vibration velocity dependence of quality factor for SCNN and hard PZT disks.

Fig. 3. Picture of cantilever-type ultrasonic motor for SCNN-A-MLPC.

Fig. 4. Simulated result of vamplate radius dependence of maximum revolution speed (Ω_0) and torque (T_0).

Fig. 5. Revolution speed vs. frequency characteristics for SCNN motor.

Fig. 6. Relationship among revolution speed, efficiency, and torque for SCNN motor.