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1. Introduction 
Rectification of acoustic waves or heat flow has 

recently attracted a great deal of attention from a 
theoretical and practical point of view[1-6].  The 
rectification means that acoustic energy flows more 
easily in one direction than in the other, forming a 
regulator for acoustic waves in solids. Liang et al.
recently proposed a mechanism of acoustic wave 
rectification utilizing phonon mode conversions 
owing to nonlinear effects in the constituent 
materials[6], but it is difficult to actually fabricate 
such a device since suitable materials having 
extremely strong elastic nonlinearity are not 
available. 

In a previous work[7], we proposed a simpler 
model of acoustic-wave rectifier without relying on 
the nonlinearity; triangular holes align with the 
same separation in the elastically-isotropic substrate, 
as shown in Fig. 1(a).We confirmed numerically 
that the system works for rectifying bulk acoustic 
waves; the acoustic wave propagating in 
(I)-direction is transmitted beyond the scatterers 
more than that propagating in (II)-direction.  

Most crystalline materials have elastic 
anisotropy. For example, crystalline copper has 
large elastic anisotropy; the anisotropy factor A
defined by 44 11 122 /A C C C becomes 3.2 1A
[8], where {Cij} are the stiffness tensor elements in 
cubic crystals. The slowness curve in the (001) 
plane is illustrated in Fig. 1(b), showing the group 
and phase velocities of an acoustic wave are not 
generally collinear. Then one expects that the 
phenomenon affects the rectification effects on the 
phonon propagation, but the effects are not easy to 
speculate. The purpose of this work is to elucidate 
the effects of elastic anisotropy on the rectification 
of acoustic waves, by means of numerical 
simulations. 

2. Model and methodology 
The acoustic-wave rectifier considered here is 

composed of crystalline copper with aligned 
isosceles-triangular holes with the summit angle 
in the y  direction as shown in Fig.1(a). 
Neighboring triangular holes are separated by the 
same distance as the base length, a so the 

periodicity of the array is 2D a . The axes of the 
holes are set in the z  direction corresponding to 
the crystal axis [001] of cubic symmetry. The 
substrate is assumed to expand in the z direction 
infinitely, so that the system is homogeneous in the 
z  direction.  

 The equations of motion governing the 
displacement field ,iu tr and the stress tensor 

,ij tr are given by 

, , 1,2,3i j iju t t ir r r , (1) 

, , , 1,2,3ij ijkl l kt c u t i jr r r , (2) 

where ,x yr , and r  and ijklc r  are the 
position-dependent mass density and stiffness 
tensor of the substrate, respectively. The summation 
convention over repeated indices is assumed in the 
equation. 

To specify the effects of the anisotropy on the 
acoustic-wave rectifier, we focus our attention on 
the mixed modes propagating on the (001) plane, ------------------------------------------------------------ 
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Fig. 1(a) Acoustic-wave rectifier proposed. Thick arrows 
indicate the direction of incident waves. (b) Slowness curve 
of copper in the (001) plane. The green and black solid lines 
represent slow-transverse (ST) and quasi-longitudinal (L) 
waves, respectively, which couple each other in arbitrary 
angle in the (001) plane. And a dashed pink line indicates 
fast-transverse (FT) waves whose polarization is along the 
[001] direction independently. vt is the velocity of transverse 
waves in the [100] direction. 
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which consist of quasi-longitudinal (L) and 
slow-transverse (ST) waves as shown in Fig.1(b), 
considering that it is obvious from Fig. 1(b) that 
there is no nonlinear effect on propagation of the 
fast-transverse (FT) waves, and FT mode waves do 
not mix with other modes. 

We numerically solve these equations using 
finite-difference time-domain (FDTD) method [9] 
and can obtain the time evolutions of the 
displacement field and the stress tensors at each 
spatial grid, and then we can calculate ,iu r
and ,ij r  in frequency domains using Fourier 
transform. Using them, we can evaluate the acoustic 
energy flow passing through a position x along the 
x  direction in the frequency domain; 

, 4 Im , ,x j jxJ x u dyr r . (3) 

Hence we define the transmission rate T by the 
ratio of the x component of the acoustic Poynting 
vector ,x DJ x  to that in the absence of holes

0 ,x DJ x ;

0

,
,

x D

x D

J x
T

J x
,  (4) 

where Dx represents the detecting position which is 
on the right side of the triangular holes for case(I) 
(whose incident wave goes toward the bases) and 
on the left side for case(II) (whose incident wave 
goes toward the summits) . 

3. Numerical Results 
Exciting a longitudinal wave-packet with 

gaussian distribution in frequency propagating in 
the x (or [100]) direction, we investigate the 
transmission of the waves. The central frequency is  

D / vt 14  and its width / 9tD v so that the 
spectra cover the entire frequency region of interest. 

Fig.2(a) shows the transmission rates versus 
frequency for the case with / 3(forming an 
equilateral triangular hole). The transmissions of 
cases (I) and (II) coincide in the low frequency 
region. On the other hand, there is disagreement in 
magnitude between (I) and (II) above a threshold 
frequency (as we will discuss below). In contrast to 
the rectifier made of the isotropic material, it is 
found that the transmission rates of the case (I) and 
(II) are comparable, manifesting that the elastic 
anisotropy suppresses performance of rectification 
effects.  

Finally, we plot in Fig.2(b) the dispersion 
relation of mixed modes along the x direction 
within empty-lattice approximation in order to 
understand the singular behaviors in the 
transmission rates. We can see sub-band structures 
for ST and L modes, which correspond to different 
reciprocal lattice vector in the y direction. The 
singular behaviors occur when the curves of ST 
modes have local minima due to elastic anisotropy, 
where mode conversions from L modes to ST ones 
or vice versa are enhanced because of the large 
density of states of ST modes. 
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Fig. 2(a) Transmission rates versus frequency for the case 
with / 3 (forming an equilateral triangular hole). Red 
and blue lines indicate case (I) and (II), respectively. The 
incident wave is a longitudinal one. (b) Dispersion relations 
of mixed modes along the x direction within empty-lattice 
approximation. Black and green lines represent longitudinal 
(L) and slow-transverse (ST) modes, respectively. Dashed 
lines indicate the frequencies of local minima in the ST 
curves. 
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