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1. Introduction
The noticeable behavior of phonons in 

periodic superlattices (SLs) originate mainly from
the existence of frequency gaps, which are due to 
the Bragg reflections of the phonons with long 
wavelengths [1, 2]. Since Bragg reflections occur 
essentially as a result of the interference of waves, 
they are also seen in the propagation of photons and 
electrons through periodic media [3]. In the case of 
phonons, there exists an inherent type of Bragg 
reflection in addition to ordinary Bragg reflections
[4, 5].

When phonons are injected to interfaces of a 
SL at an angle, three modes of propagation, i.e., 
one longitudinal (L) and two transverse (T), are 
involved in the reflection and transmission 
processes. This leads to coupling between the 
modes and mode conversion at the interface. As a 
result of the multiple reflection by the interfaces of
the periodic SL, there exist two types of Bragg 
reflection, i.e., "intermode" Bragg reflections can 
occur besides ordinary "intramode" Bragg 
reflections[4, 5]. For example, incident L phonons 
can be Bragg-reflected as T phonons, i.e., the 
amplitudes of the reflected T phonons add up in 
phase but those of the reflected L phonons are 
canceled out. Therefore, the corresponding 
frequency gaps should be classified when 
mode-dependent characteristics of phonon 
propagation are investigated [5].

Moreover, for phonons in superlattices 
consisting of solid and liquid layers, another 
inherent type of interference effect can be expected, 
because there is no transverse phonons within the 
liquid layers.

That is, when L phonons are injected to an 
interface of liquid and solid layers at an angle from 
a liquid, three modes of transmission are involved.
As for reflected phonons, however, only the 
longitudinal mode is involved. This leads to an 
interesting mode-dependent characteristics of 
phonon propagation.

Recently, Hassouani et al. studied the sagital 
acoustic waves in finite solid-liquid SL based on the 
Grren’s function method [6]. They pointed out the 
peculiar properties of solid-liquid SLs are the 
existence of two types of frequency gap, i.e., the 

stop bands originating from the periodicity of the 
system (Bragg-type gap) and the transmission zeros 
induced by the presence of the solid layers 
immersed in the liquid. However, the physical 
meaning of the transmission zeros has not been
clear.

In the present study, based on a different
method, we caclulate the dispersion relations, 
transmittance of phonons, and the corresponding 
velocity and stress fields, and discuss the properties 
of phonons in the solid-liquid super lattices.

2. Method
In the present calculation, we adopt the 

isotropic continuum approximation for solid layers
of the SL. Under this condition, the phonon modes 
polarized in the sagittal plane are decoupled from 
the horizontally polarized shear (SH) mode. We 
consider sagittal modes, i.e., the coupled L and T 
vibrations in the sagittal plane.

In addition, liquid layers are assumed to be 
ideal. This leads to the conditions that viscous shear 
stresses vanish but tangential displacements need 
not to be continuous at the interfaces between solid 
and liquid layers. As a result, the normal stress and 
the normal velocity should be continuous at the 
interfaces. These conditions are formulated in terms 
of the transfer matrix.

Based on the transfer matrix method, we 
calculate the dispersion relations of solid-liquid SLs 
with the infinite number of unit periods. Moreover, 
transmittance and phase time of phonons 
propagating through the finite solid-liquid SLs are 
calculated. In the present proceedings, only the 
dispersion relations are shown.

3. Numerical results and discussions
As a numerical example, we show in Fig. 1

the dispersion relation of the SL consisting of 
Plexiglas and water layers as a function of the wave 
vector k parallel to the interfaces. The gray and 
white areas correspond to the frequency bands and 
gaps, respectively. The thicknesses of the solid and 
liquid layers are assumed to be the same.
P = 1.20 g/cm³, 
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vt = 1.38 km/s, and v = 2.70 km/s for Plexiglas
= 1.00 g/cm³, v = 1.49 km/s for water [6].

Our calculations reproduced the results of 
Hassouani et al., though the calculation method is 
different. The region marked with * corresponds to 
transmission zeros.

Figure 2 shows the phonon dispersion 
relations calculated for 0 , 20 . Bloch wave 
number zk and the imaginary part of zk are shown as 
a function of the frequency. In the Bragg gap, the 
imaginary part of the Bloch wave number is a continuous 
function of the frequency. On the other hand, in the 
transmission zeros, the imaginary part of the Bloch wave 
number is not a continuous function and becomes 
infinity. This is a characteristics of the transmission 
zeros.

4. Conclusions
We calculated the dispersion relations of a

superlattice consisting of alternate stacking of 
liquid and solid layers, and examined the 
vibrational modes in this structure. The phonon 

velocity and stress fields will be illustrated 
elsewhere and also the detailed characteristics will 
be examined. In particular, the vibrational modes 
within the transmission zeros will be discussed.
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Fig. 1 Phonon dispersion relations of a superlattice 
constituting of Plexiglas and water as a function of the 
wave vector k parallel to the interfaces. The gray and 
white areas correspond to the frequency bands and gaps, 
respectively. The thicknesses of the solid and liquid 
layers are assumed to be the same. The region marked 
with * corresponds to transmission zeros.

Fig. 2 Phonon displacements in a superlattice 
constituting of Plexiglas and water for 0 , 20 .
Bloch wave number zk (solid lines) and the imaginary 
part of zk (broken lines) are shown as a function of the 
frequency.
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