High Accuracy Measurement of Ultrasonic Travel Time by Pulse－Echo Overlap Method：the McSkimin Criterion for Specimens over a Wide Range of Characteristic Impedance
 $$
\begin{aligned} & \text { パルスエコー重畳法による超音波伝播時間の高確度測定: 広域 } \\ & \text { 特性インピーダンス試料へのMckimin 判定条件 } \end{aligned}
$$

Masao Kodama and Seiji Kojima（Univ．Tsukuba，PAS）
小玉正雄 ${ }^{\dagger}$ ，小島誠治（筑波大 数理物質）

1．Introduction

When measuring ultrasonic travel time in solids with the pulse－superposition method ${ }^{1,2)}$ or the pulse－echo overlap method，${ }^{3,4)}$ the McSkimin criterion is often used to find the condition of correct overlapping between echoes．${ }^{1,2)}$ By making use of phenyl benzoate，the transducer can be bonded to the specimen as thin as possible ${ }^{4}$ ；also， the characteristic impedance of phenyl benzoate has been evaluated ${ }^{5}$ ．Thus，the McSkimin criterion is calculated for phenyl benzoate as the adhesive and for specimens over a wide range of characteristic impedance．As a result，the number of mismatch cycles in the overlapping is clearly determined．

2．The McSkimin criterion

First，we shall summarize the theory ${ }^{1,2)}$ briefly． From the acoustic transmission line analysis of the composite structure shown in Fig．1，the mechanical impedance，Z_{d} ，of the transducer，including the bonding layer，seen from FF ＇is given by

$$
\begin{equation*}
Z_{\mathrm{d}}=\mathrm{j} Z_{1}\left[\frac{\left(Z_{1} / Z_{2}\right) \tan \beta_{1} l_{1}+\tan \beta_{2} l_{2}}{\left(Z_{1} / Z_{2}\right)-\tan \beta_{2} l_{2} \tan \beta_{1} l_{1}}\right], \tag{1}
\end{equation*}
$$

and the reflection coefficient $E_{\mathrm{b}} / E_{\mathrm{i}}$ for sound pressure wave is given by

$$
\begin{equation*}
E_{\mathrm{b}} / E_{\mathrm{i}}=\left(Z_{\mathrm{d}}-Z_{\mathrm{s}}\right) /\left(Z_{\mathrm{d}}+Z_{\mathrm{s}}\right), \tag{2}
\end{equation*}
$$

where j is the imaginary unit；Z_{1}, Z_{2} ，and Z_{s} are the characteristic impedances of the bonding material， the transducer，and the specimen，respectively；β_{1} and β_{2} are the phase constants for the bonding material and the transducer，respectively；l_{1} and l_{2} are the thicknesses of the bonding layer and the transducer，respectively；E_{i} and E_{b} are the complex amplitudes of incident and reflected sound pressure waves，respectively．Then，the phase angle，γ ，of the reflection coefficient is given by

$$
\begin{equation*}
\gamma=-2 \arctan \left(Z_{\mathrm{d}} / \mathrm{j} Z_{\mathrm{s}}\right) \tag{3}
\end{equation*}
$$

The travel time is usually measured between adjacent echoes．The time relation under the cycle－for－cycle overlap between adjacent echoes is

$$
\begin{equation*}
T=\tau-\gamma /(360 \nu)+n / v, \tag{4}
\end{equation*}
$$

where T is the measured travel time，τ is the true round－trip travel time，v is the radio frequency of the pulse，and n is the number of mismatch cycles in the overlap．

Fig． 1 Composite structure of transducer，bonding layer，and specimen．

In order to find the condition of correct cycle－for－cycle matching，$n=0$ ，the McSkimin criterion uses two different frequencies，v_{r} the resonance frequency of the transducer and $0.9 \mathrm{r}_{\mathrm{r}}$ ． Let $T\left(v_{\mathrm{r}}\right)$ and $T\left(0.9 \mathrm{v}_{\mathrm{r}}\right)$ be the measured travel times at v_{r} and $0.9 v_{\mathrm{r}}$ and let $\gamma\left(\nu_{\mathrm{r}}\right)$ and $\gamma\left(0.9 v_{\mathrm{r}}\right)$ be the phase angles at v_{r} and $0.9 v_{\mathrm{r}}$ ，then

$$
\begin{align*}
\Delta T & =T\left(0.9 v_{\mathrm{r}}\right)-T\left(v_{\mathrm{r}}\right) \\
& =\frac{1}{0.9 v_{\mathrm{r}}}\left[n-\frac{\gamma\left(0.9 v_{\mathrm{r}}\right)}{360}\right]-\frac{1}{v_{\mathrm{r}}}\left[n-\frac{\gamma\left(v_{\mathrm{r}}\right)}{360}\right] . \tag{5}
\end{align*}
$$

If Z_{1} and Z_{2} are known，$\gamma\left(v_{\mathrm{r}}\right)$ and $\gamma\left(0.9 v_{\mathrm{r}}\right)$ can be evaluated for given values of $\beta_{1} l_{1}$ and Z_{s} ，and hence ΔT at predetermined n can be calculated．

3．Cycle－for－cycle matching between echoes

From eqs．（1）－（5），ΔT is calculated for 10 MHz quartz transducers $\left(Z_{2}=15.3 \times 10^{6} \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right.$ for X－cut quartz and $10.4 \times 10^{6} \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ for Y －cut quart $z^{2)}$ ）since the properties of quartz transducers are accurately known．Phenyl benzoate was chosen as the bonding material since it can be easily obtained as a pure chemical and is known to have superior qualities near room temperature ${ }^{4}$ ；also its characteristic impedance has been evaluated（ $Z_{1}=$ $3.30 \times 10^{6} \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ for the longitudinal wave and $1.60 \times 10^{6} \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ for the transverse wave）．${ }^{5)}$ Values of Z_{s} were taken from 5 to $30 \times 10^{6} \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ for the longitudinal wave and from 3 to $18 \times 10^{6} \mathrm{~kg}$ $\mathrm{m}^{-2} \mathrm{~s}^{-1}$ for the transverse wave；these ranges adequately cover ordinary specimens．Careful bonding makes $\beta_{1} l_{1}$ less than 10° at 10 MHz ，so that ΔT is calculated at $\beta_{1} l_{1}=0^{\circ}, 10^{\circ}$ ，and 20° ．

Fig. $2 \Delta T$ as a function of Z_{s}, n, and $\beta_{1} l_{1}$ for the longitudinal wave; transducer, 10 MHz X -cut quartz $\longrightarrow \beta_{1} l_{1}=0^{\circ}, \ldots-$. $\beta_{1} l_{1}=10^{\circ}, \cdots \cdots . . \quad \beta_{1} l_{1}=20^{\circ}$

Fig. $3 \Delta T$ as a function of Z_{s}, n, and $\beta_{1} l_{1}$ for the transverse wave; transducer, 10 MHz Y-cut quartz

$$
\longrightarrow \beta_{1} l_{1}=0^{\circ}, \ldots \square \beta_{1} l_{1}=10^{\circ}, \cdots \cdots \cdots \beta_{1} l_{1}=20^{\circ}
$$

Figures 2 and $\mathbf{3}$ show the relations of ΔT and Z_{s} for the longitudinal and transverse waves. In order to determine the number of mismatch cycles, Z_{s} is first calculated with an approximate value for the velocity of sound in which, for example, two echoes are compared with leading edges; this phase comparison usually corresponds to $n=+1$ or +2 .

Taking the round-trip travel time to be $10 \mu \mathrm{~s}$, the mismatch of one cycle ($0.1 \mu \mathrm{~s}$) gives an error of 1% in the velocity of sound and hence in Z_{s}. If the measured ΔT values fall between ΔT at $\beta_{1} l_{1}=0^{\circ}$ and ΔT at $\beta_{1} l_{1}=10^{\circ}$ or at $\beta_{1} l_{1}=20^{\circ}$ at each n, then the condition $n=0$ is found. The condition of $n=0$ must be finally confirmed with the correct Z_{s} value calculated from the correct value of the velocity of sound. When T is measured at v_{r}, then $\gamma /(360 v)$ in eq. (4) is negligible compared with $\tau .{ }^{1,2)}$

4. Velocity of sound in silica glass

Table I shows the number, n, of mismatch cycles determined from the measured values of ΔT, where a silica glass rod is used as the specimen and the physical properties of silica glass are given in
Table II. From the relations of ΔT and Z_{s} given by Figs. 2 and 3, it can be found that all the ΔT values fall between $\beta_{1} l_{1}=0^{\circ}$ and $\beta_{1} l_{1}=10^{\circ}$ at each n both for the longitudinal and transverse waves.

Table II shows the velocity of sound in silica glass at 298 K . The velocities measured by the present authors are in close agreement, within 0.1%, of those of McSkimin both for the longitudinal and transverse waves.

Table I Number, n, of mismatch cycles

n	$T\left(v_{\mathrm{r}}\right) / \mu \mathrm{s}$	$T\left(0.9 v_{\mathrm{r}}\right) / \mu \mathrm{s}$	$\Delta T / \mathrm{ns}$
Longitudinal wave			
+2	6.8787	6.8885	+9.8
+1	6.7798	6.7785	-1.3
0	6.6812	6.6692	-12.0
-1	6.5815	6.5589	-22.7
Transverse wave			
+2	10.7869	10.7959	+9.0
+1	10.6886	10.6865	-2.1
0	10.5897	10.5764	-13.3
-1	10.4908	10.4669	-23.9

Table II Velocity of sound in silica glass at 298 K
Length of specimen: $l_{\mathrm{s}}=19.925 \mathrm{~mm}$
Mass density ${ }^{6}=2.203 \mathrm{gcm}^{-3}$
Velocity of sound reported by McSkimin ${ }^{6}$
Longitudinal wave: $c_{1}=5.97 \mathrm{kms}^{-1}$
Transverse wave: $c_{\mathrm{t}}=3.76 \mathrm{kms}^{-1}$
Velocity of sound (present measurement)
Longitudinal wave: $c_{1}=2 l_{\mathrm{s}} /\left(T\left(v_{\mathrm{r}}\right)\right.$ at $\left.n=0\right)=5964 \mathrm{~ms}^{-1}$
Transverse wave: $c_{\mathrm{t}}=2 l_{\mathrm{s}} /\left(T\left(v_{\mathrm{r}}\right)\right.$ at $\left.n=0\right)=3763 \mathrm{~ms}^{-1}$
Characteristic impedance (present measurement)
Longitudinal wave: $Z_{\mathrm{s}}=13.14 \times 10^{6} \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
Transverse wave: $Z_{\mathrm{s}}=8.29 \times 10^{6} \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$

References

1. H.J. McSkimin: J. Acoust. Soc. Am. 33 (1961) 12.
2. H.J. McSkimin and P. Andreatch: J. Acoust. Soc. Am. 34 (1962) 609.
3. J.E. May: IRE Natl. Conv. Rec. 6, pt. 2 (1958) 134.
4. E.P. Papadakis: J. Acoust. Soc. Am. 42 (1967) 1045.
5. M. Kodama: Jpn. J. Appl. Phys. 21 (1982) 1247.
6. H.J. McSkimin: J. Appl. Phys. 24 (1953) 988.
