1. Introduction

The physical phenomena of breaking electric contacts are softening, melting, arc ignition, and isolation as shown in Fig.1[1][2][3]. To analyze the transition process of the phenomena, a cluster model for electric equivalent circuits is proposed and experimentally examined. The mechanical contacting force breaks currents from energizing to isolation through melting and arc discharge. Due to tangency on a rough surface, the contacts consist of complicated contacting multi-points. The contacting points are classified simply as electric conductive cluster and electric field effect cluster according to electric function.

2. Electric cluster models of mechanical contacting points with elastic and plastic deformation

Mechanical contact force forms elastically and plastically contacting points between metal electrodes as shown Fig.2(a). They have mainly been studied in terms of electric conductive contacting points. The sequence of breaking phenomena – metal softening, metal melting, metal bridge and arc discharge, has been considered to be serial phenomena. The authors paid attention to non-electric conductive contacting points, which exist from the first stage of a make/break operation. On the contacting metal surface, processed shape and undulation of surface (mm order), surface roughness (µm order), and crystal level disorder (nm order) exist together. The mechanism of making contact is elastic and plastic deformation. In addition, the surface is covered not only with pure metal but also with a thin insulating film. The combinations of contact points are very complex and change over time according to contact force as show in Fig.3. However, the breaking operation can be considered only as an elastic process as shown in Fig.2(b). Therefore, the contacting points are classified simply into electric conductive cluster and electric field effect cluster according to electric function. The contact points belonging to the electric field effect cluster mainly exist around large-scale undulations and surface roughness, and are based on crystal level and several nm disorders.

mm210005@isenshu-u.ac.jp
3. Behavior of electric conductive cluster and electric field effect cluster

Conventional electro-magnetic relays were used for the experiment. Contact voltage V_c and contact current I_c during a breaking operation were measured in the make/break circuit with a transient current switch and a capacitor as shown in Fig.5[4][5]. The V_c rise during breaking contact was controlled. V_c and I_c responses before $V_c=U_m$ in Fig.6 show the behavior of the electric conductive cluster defined by mechanical contact force. Here, U_m is melting voltage and 0.4 V corresponds to the melting temperature of Ag. On the contrary, V_c and I_c responses after $V_c=U_m$ in Fig.6 show a peculiar response [6][7]. We consider it to be "fusion". Melting shuts down I_c. It does not depend on a mechanical motion but on circuit condition. This means the electric conductive cluster is transformed into a melting cluster. Figure 7 is an explanatory drawing of the transformation from electric conducive cluster into melting cluster until disappearing through melting. Before $V_c=U_m$, the sizes of electric conductive cluster and electric field effect cluster are reduced at the same time. On the contrary, during melting, only the electric conductive cluster or the melting cluster is reduced until it disappears, but the electric field cluster remains as it is. After fusion of the melting cluster, only the electric field cluster plays a role in V_c and I_c responses. Figure 8(a) shows impulsive noise due to electric field cluster. It shows the remaining time of the cluster. After contact current shut-down but within the remaining time, we increased V_c until arc ignition voltage using an adjusted capacitor in the transient current circuit. Figure 8(b) confirms arc ignition. We also increased V_c until the same arc ignition voltage outside the remaining time of the cluster using a larger capacitor. Figure 8(c) shows no arc ignition. This means arc ignition of Ag contacts is not a serial phenomena from metal evaporation through metal bridge.

References