Auto-measurement of resonant photoacoustic detection
and its frequency characteristics

Jun Hoshimiya and Tsutomu Hoshimiya (Grad. School Eng., Tohoku Gakuin Univ.)

1. Introduction

The attempt to apply acoustic resonance (such as pipe or Helmholtz resonator) to photoacoustic (PA) spectroscopy has been dominantly demonstrated in the application to the high-sensitive atomic or molecular detection rather than PA imaging[1]. At the previous USE conference, our group has analyzed and demonstrated open-resonator PA detection and imaging with a spheroidal acoustic resonator[2].

With the presence of the leakage, a leaky admittance will be parallelly added to the acoustic equivalence circuit so that the precise analysis requires both amplitude and phase signals at individual modulation frequencies.

In the viewpoint described above, we developed an auto-measurement resonant PA system that can measure both amplitude and phasesignals with a software LabVIEW. In this paper, the system and the results will be presented.

2. Experimental apparatus

The basic experimental setup was shown in Fig. 1. A spheroidal acoustic resonator and other measurement hardware were the same as those presented at the last conference. The only difference is to adopt a software LabVIEW (National Instruments) to use a function generator (NF, DF1906) and a lock-in amplifier (NF, LI-5640). Furthermore, a slide-stage was used to vary the distance between the specimen and a focus of the resonator.

Fig. 2 Resonant characteristics of the (a) PA amplitude (upper) and (b) phase (lower) signals.

Due to the improvement of the measuring system, PA amplitude and phase signals were obtained automatically and easily by the use of LabVIEW. The example of the obtained PA amplitude and phase signals were shown in Figs. 2 (a) and (b), respectively.

3. Experimental results

The resonant frequency of the acoustic resonance without leakage was agreed well with the designed value. With the presence of the leakage, PA signal was decreased at the small leakage, however with increasing the separation distance between specimen and the focus PA signal gradually increases. On the other hand, resonance
frequency sifted toward higher frequency side monotonically. The characteristics were shown in Fig. 3.

![Graph showing PA signal and resonant frequency dependence on distance](image)

4. Discussions and conclusion

By improvement of the PA measuring system, PA amplitude and phase signals were easily measured and can be plotted like a Bode-plot. The frequency behavior of the complex PA signal can also be plotted in a complex-number plane in order to analyze a leaky component of the acoustic admittance. The present method is expected to contribute to the resonant-PA analysis including applications of PA imaging to the nondestructive inspection.

Acknowledgment

The one of the authors (TH) thanks to Tohoku Gakuin University, because this work is financially supported by Tohoku Gakuin Group-research Fund 2013.

References