Sub-grid Technique for Numerical Simulation of Sound Wave Propagation Combining Constrained Interpolation Profile Schemes

Yuta Ara1, Kan Okubo1, Norio Tagawa1, Takao Tsuchiya2, and Takashi Ishizuka3

1. Introduction

To date, numerical analysis for sound wave propagation in time domain has been investigated widely as a result of computer development. Now, the development of accurate numerical schemes is an important technical issue[1].

The constrained interpolation profile (CIP) method, a novel low-dispersive numerical scheme is a type of method of characteristics (MOC) [2-4].

However, new grid systems are required for CIP simulations of complicated heterogeneous media or large-scale simulations of wave propagation. To overcome this problem, sub-grid techniques[5] are proposed for other simulation methods of wave propagation. In the previous study, we have introduced this technique for the type-C and type-M CIP methods, and evaluated the setting of the boundary interface between the course grid and sub grid[6].

The type-M CIP method is a simple technique with smaller memory use and less calculation time required than the type-C CIP method in exchange for accuracy. Therefore, from the point of reduction in the calculation cost, a sub-grid technique for the type-M CIP method is also important.

Subgrids are defined as those smaller than the surrounding grids: we can use suitable multisize grids in an analysis domain according to a sub-grid technique for the CIP-MOC simulation of sound wave propagation.

In this study, we have improved on the sub-grid techniques[6] for CIP analysis using generalized CIP (GCIP) schemes[7] and reported the comparison of accuracy and calculation cost.

2. Sub-grid techniques in CIP method

In CIP analysis, the governing equations for linear acoustic fields (a lossless medium) are transformed into advection forms. For example, for the calculation of x-advection, the advection equation is given as

$$\frac{\partial(p \pm Zv)}{\partial t} \pm c \frac{\partial(p \pm Zv)}{\partial x} = 0. \quad (1)$$

In this equation, p is the sound pressure, v_x is the particle velocity, Z signifies the characteristic impedance (i.e. $Z = \sqrt{\rho K}$) and c represents the sound velocity in medium (i.e. $c = \sqrt{K/\rho}$). Here, ρ denotes the density of the medium, and K represents the bulk modulus.

In addition, through simple spatial differentiation of the equations, the equations of the derivatives are given as

$$\frac{\partial(p \pm Zv)}{\partial t} \pm c \frac{\partial(p \pm Zv)}{\partial x} = 0. \quad (2)$$

Figure 1 shows the sub-grid technique in the CIP method. Here, Δx and Δy represent the course grid size, while $\Delta x'$ and $\Delta y'$ are sub grid size, respectively.

Figure 2 shows the treatment of the boundary course grid and the sub-grid in propagation of $\pm x$ direction. In first step, we interpolate P, v_x, ∂P and ∂v_x in direction using Hermite interpolation. Next, we calculate advection equations (Eqs.(1) and (2)) in $\pm x$ direction. Notice that sub grid technique in the CIP analysis just needs to change interpolating function in sub grid region, because CIP scheme is based on a two-point stencil’s MOC.

In this study, we use the GCIP scheme; GCIP(7,1), GCIP(3,1), and GCIP(3,0). Of these schemes, GCIP(7,1) and GCIP(3,0) respectively employ 7th-order Hermite interpolation and 3rd-order Lagrange interpolation with four stencils for the advection calculation.

Fig. 1 Sub-grid technique in the CIP method.
3rd order Hermite interpolation in y-axis (first step)

3rd order Hermite interpolation in x-axis (second step)

Fig. 2 Treatment of the boundary.

(a) $t = 10 \Delta t$
(b) $t = 500 \Delta t$
(c) $t = 1000 \Delta t$

Fig. 3 Distribution of the sound pressure

Fig. 4 Absolute pressure value: $|p_{\text{fine}}^t|$ and $|p_{\text{sub}}^t - p_{\text{fine}}^t|$

4. Results and discussion

We present numerical results obtained using the sub-grid technique in the CIP analysis. Calculation parameters are the following: the direction of acoustic field propagation, x, y (two-dimensional analysis); course grid size, $\Delta x = \Delta y = 0.06$ m; sub grid size, $\Delta x = \Delta y = 0.02$ m; time step, $\Delta t = 3.79 \times 10^{-5}$ s; $\rho = 1.21$ kg/m3 and $K = 1.42 \times 10^5$ Pa.

We also investigated the calculation time required for some sub-grid models. Here, we use a PC with Intel Core i7-980X Extreme Edition 3.33GHz. This processor has 6 cores and 12 hyperthreaded cores, or effectively scales 12 threads. For all analyses, parallel computation using OpenMP was applied.

Figure 3 shows the sound pressure distribution obtained using type-M CIP analysis with sub-grids at $t = 10 \Delta t$, $t = 500 \Delta t$ and $t = 1000 \Delta t$. Here GCIP(7,1) and GCIP(3,0) schemes are utilized for the advection calculation in coarse grids. The input pressure is driven from inside of the sub-grids. Here, the meshed area is the sub-grid region. We can ascertain the propagation behavior including that in the sub-grid region.

Figure 4 showed the error using sub-grids by means of comparison of the absolute pressure value at point A (see Fig. 3). We also show the numerical results obtained using the sub-grid technique for type-M CIP (i.e., GCIP31) analysis. Calculation parameters of both analyses are on equal terms. It is confirmed that the boundary in the sub-grids has good permeability characteristics with low reflection. The numerical error of the type-M GCIP(7,1) method is a little smaller than that of the type-M CIP method for acoustic simulation with a subgrid system.

Figure 5 shows the comparison of calculation time, where the calculation is divided into 500 time steps. Table 1 is the calculation parameter. The sub-grid model has a much shorter calculation time than the fine grid model. Fig. 5 also shows that CIP analysis with course grid that calculates with 7th-order Hermite interpolation required more calculation time than 3rd-order Hermite interpolation. This was because the number of variables for course grid is different.

References