1. Introduction

In shallow water, the internal wave (IW) is primarily generated by the tidal force. Because the isopycnic surface fluctuates by the internal wave, it strongly influences the sound propagation. Therefore, the report of research concerning the underwater acoustic field has been increased. Tsurugaya et al. investigated the scattering mechanism by IW, and clarified the positional relationship of the turning ray and IW. However, this study is an investigation of the sound scattering by one IW. IW usually forms the train. Then, in the case when two IWs were consecutive, the sound scattering by the second IW was investigated.

2. Parameters used for examination

The parameters used to examine IW is given in Fig. 1. Layer depth (LD) is 20m. Under LD, there is thermocline, and the depth that is deeper than 70m is an isothermal layer. The bottom is 200m in depth.

Absorption coefficient in the bottom is 1.0dB/λ. though the sediment is sandy silt. IW is 100m in width, and the amplitude 22.5m. The shape of the IW was approximated by sech^2. The model used to calculation is FOR3D. IW is input to the model by the shape of IW at intervals of 10m. The frequency used to calculation is 600Hz. The second IW is the same shape.

3. Sound scattering by one IW

In the scattering by one IW, the strong scattering is generated when the turning ray and IW was overlapped. The subtracted sound field by one-IW is shown in Fig. 2. The subtracted sound field is a result of subtracting the sound field without IW from the sound field of one-IW. The width of IW is 100m (center), twice width (200m; upper), 1/2 width (50m; lower). The scattering pattern doesn’t change even if the width of IW is widened, but the strength of scattering increases by the width. And, even if the amplitude of IW changes, the same tendency is demonstrated. Next, the scattering pattern do not change by varying in the temperature gradient of thermocline though the strength level is changed. That is to say, the scattering by the internal wave is changing in mode excitation, and the change by mode excitation originates in the wave motion of the upper surface of the thermocline. In other wards, the scattering by IW is the result that the mode having the antinode in the thermocline is depressed in the direction of depth by the wave motion of IW.

4. Sound scattering by the second IW

A sound field in the waveguides is represented by the product of the excitation.
coefficient of the mode and the eigenfunction of the waveguide. Therefore, it can be considered that
the influence by IW train is a superimposition of the influence by each IW. Next, the internal wave train
that consists of two IWs is considered. To clarify
the influence by 2-IWs, the spacing between 2-IWs
has been changed from 0 to 1000m. The influence
by the second IW is shown in Fig. 3. In this figure,
the subtracted sound field is represented. This
sound field is a result of subtracting the sound field
in one-IW from those of two IWs. But, top figure is
the subtracted sound field in the sound field
not-including IW from those of one-IW. The
difference of gradations is a difference from
scattered field by the first IW as indicated in the
right scale. Top figure is the subtracted sound field
by one-IW, and below figures are the scattering
sound field by 2-IWs. The spacing between two
IW is 0m, 300m, and 600m from 3-(b). Compared
with the scattering patterns, the intensity level of
subtracted sound field is strong in 0m and 600m,
but is weak in 300m. Next, the intensity distribution
in receiving depth 80m is shown in Fig. 4. A
horizontal axis is a spacing between two IWs, and
the case in 0m is consecutive one. The intensity
level is high when the spacing is 0m and around
600m. In this case, IW is in 4800m, and IW
overlaps with the turning ray. This turning ray is
turned in the upper surface of the thermocline. Then,
the case that IW do not overlap with turning ray is
considered. The intensity distribution on the
spacing between IWs is shown in Fig. 5. The
receiving depth is also 80m. IW position is in
4200m. The intensity level is high in the spacing
around 300m and 900m. In both cases, the strong
and weak strength level is yielded in 600m space.
That is, the scattering sound fields of each IW
interacts constructively and/or destructively.
Therefore, it is considered that the sound field by
2-IWs is the results of interacting the scattered
sound field in 1st IW and 2nd one. In other words,
the strong scattering is yielded in the case of which
two scattering sound fields interacts constructively.

5. Summary

The influence of the second IW in IW train was
investigated. In the overlapped with IW and the
turning ray, a strong scattering was yielded at 0m
and 600m in the spacing of 2-IWs. Moreover, it was
at 300m and 900m when IW and the turning ray
did not overlap. That is, the influence of the second
IW was yielded at spacing of 600m. Therefore, the
scattering of the sound wave by 2-IWs is the
superimposition of the scattering sound field by
each IW.

References
3. C. R. Jackson et al., Internalwave Atlas. 2nd ed.,
(2004).
4. D. Lee et al., “Numerical Ocean Acoustic
Propagation in Three Dimension”, World
30(3)(1984)199.