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1. Introduction 
Mechanical properties such as 

viscoelasticities (e.g., [1]) are estimated using 
various mechanical sources such as a heart motion, 
a low frequency compression/stretching, an applied 
vibration, and an acoustically radiated force etc. 
Such estimation is performed through 
measurements of deformations (strains etc.), a 
speed of shear wave propagations etc. Such 
mechanical properties can be reconstructed 
numerically or via signal processing. A stress tensor, 
internal mechanical sources and a mean normal 
stress can also be reconstructed simultaneously. 
However, various artifacts possibly occur under 
various assumptions such as an incompressibility of 
tissues, a low dimensionality of mechanical 
property distributions (e.g., [2-6]), etc. 

For the reconstruction of a shear modulus 
distribution, the distribution of a mean normal 
stress is sometimes ignored. In this report, the 
effects of ignorance are investigated through 
simulations. Theoretically, an assumption of a 
uniform mean normal stress distribution leads to 
reconstruction errors. 

2. Ignoring mean normal stress 
For the multidimensional reconstruction of a 

shear modulus, Methods A to C [4,5] use the mean 
normal stress as an unknown, whereas Method F [3] 
uses a typical Poisson ratio in governing equations, 
i.e., for Methods A to C, 

i = p,j ij + 2 ijG,j + 2 ij,jG     (1)                                   

and for Method F, 

i = { ij}{2 /(1-2 )}G,j + { ij},j{2 /(1-2 )}G
+ 2 ijG,j + 2 ij,jG,               (2) 

where G is the target shear modulus, p is the mean 
normal stress, is the Poisson ratio, ij is the 
measured strain tensor,  is the density, i is the 
measured acceleration vector, and ij is a delta  
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function.
Method B [4] permits the simultaneous 

reconstruction of a mean normal stress p by using a 
reference mean normal stress or a reference 
Poisson’s ratio with a measured volume strain ;
and Methods A [4] and C [5] permit a shear 
modulus reconstruction with remaining the mean 
normal stress unknown by using no reference mean 
normal stress and by using the quasi-reference 
mean normal stress (e.g., zero) instead of an 
absolute mean normal stress, respectively. However, 
for the mean normal stress reconstruction, Method 
C yields an absolute difference distribution 
dependent on the used quasi-reference mean normal 
stress and by using an iterative solution (e.g., a 
conjugate gradient method), Method A yields a 
relative distribution dependent on an initial estimate 
(e.g., unity) used for the iterative solution. Because 
a relative (Method E using a quasi-reference shear 
modulus such as a unity) or absolute shear modulus 
reconstruction can be performed with a high 
accuracy, and no geometrical artifacts are also 
generated in the mean normal stress reconstructions, 
both of the quasi-reconstructions are useful. 
Moreover, being different from Method F except 
for a 2D reconstruction using the assumption of a 
2D stress condition [3] (i.e., a 2D reconstruction 
different from using the assumption of a 2D strain 
condition [3]), Methods A to C permit dealing with 
completely incompressible tissues (  0.5) [4,5]. 
Moreover, an inhomogeneous Poisson’s ratio can 
also be dealt with [4,5]. The uses of a typical 
density value (1.0 × 103 kg/m3) is also effective for 
decreasing an unknown variable and increasing the 
speed of a calculation [3-5]. 

When ignoring the spatial distribution of p, 
the last two terms remain in the right-hand-side. 
Originally, the reasons why p was ignored are that p 
becomes indefinite theoretically and p cannot also 
be measured accurately for incompressible tissues 
because the volume strain is infinitesimal and 
Poisson’s ratio nearly equals to 0.5 [see eq. (2)]. 
Recall that when using Method F, if an error exists 
in the value used for the Poisson’s ratio , serious 
errors occur in reconstructed shear modulus values 
[3]. In contrast, Methods A to C do not yield any 
such reconstruction errors. 
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3. Simulations 
Various linear numerical cubic phantoms (50 

mm sides) were dealt with (Fig. 1). For instance, a 
Poisson’s ratio was assumed to be uniform or 
nonuniform (~0.49). The phantoms had a stiff or 
soft spherical inclusion (10 mm dia.). The 
respective phantoms were compressed/stretched or 
vibrated in a depth direction using large external 
sources generated at the upper planes of the 
phantoms. The forward calculation was performed 
using the successive-over-relaxation (SOR) method. 
Using the reconstruction Method B, the shear 
modulus distribution was reconstructed together 
with the mean normal stress distribution; and the 
shear modulus was also reconstructed using the 
method ignoring a mean normal stress distribution. 
The means and standard deviations (SDs) of 
reconstructed shear moduli were estimated in 
inclusions. 

3. Results 
For both phantoms having uniform Poisson’s 

ratios 0.48 and 0.47 and an inclusion with a shear 
modulus higher than the surrounding region (2.0 vs 
1.0 105 N/m2), as theoretically predicted, the shear 
moduli of the inclusion was estimated to be larger
than the original value, i.e., inaccurate [for instance, 
when Poisson’s ratio = 0.48, means (SDs) were 2.07 
(0.16) vs 2.02 (0.07) 105 N/m2]. The SDs also 
became larger (i.e., about twofold SDs and 
unstable) [see Table I]. See also log-gray-scaled 
images shown in Fig. 2. At the surrounding regions 
of the inclusions, reconstruction errors were 
detected rather for 0.48 than for 0.47. 

For soft inclusion phantoms, as theoretically 
predicted, the shear modulus was estimated to be 
significantly smaller than the original value (for 
instance, for a half shear modulus, 0.5 105 N/m2

and Poisson’s ratio, 0.47, means and SDs were 
respectively 0.19 (0.01) vs 0.52 (0.02) 105 N/m2

(Table I).
For instance, when the twofold shear 

modulus inclusion had a remarkedly smaller 
Poisson’s ratio than the surrounding (e.g., smaller 
than 0.43 vs 0.47), the shear modulus was estimated 
to be smaller than that of the surrounding (e.g., for 
0.42, the mean was 0.73 105 N/m2). 

For the respective same phantoms, 
completely the same results were obtained in 
compression and stretching cases. 

4. Conclusions 
The effects of ignoring a mean normal stress 

distribution were investigated. Theoretically 
predictable results were also numerically obtained.  

Fig. 1 Simulated phantom. Shear moduli, Gi = 2
105 N/m2, Gs = 1 105 N/m2.

(a)

(b)

Fig. 2. Log-gray-scaled images of shear modulus 
reconstructions using Method B (left) and ignoring 
mean normal stress (right) for (a) Poisson’s ratios = 
0.48 and (b) 0.47. 

Table I. Means and SDs of reconstructed shear 
moduli Gi and Poisson’s ratios in stiff and soft 
inclusions. 
Gi(×105N/m2) 2.00 0.50 
 0.48 0.47 0.47 

Method B 
with

2.02 (0.07) 
0.480(0.001)

1.99 (0.06) 
0.470(0.001) 

0.52 (0.02) 
0.469 (0.001) 

Ignoring p 2.07 (0.16) 2.07 (0.15) 0.19 (0.01) 

Similar artifacts are generated when ignoring 
internal mechanical sources, viscosity, nonlinear 
properties, isotropic properties. Occasionally 
performed assumption of a local homogeneity also 
affects the reconstruction severely (i.e., decrease in 
a spatial resolution as well). At the symposium, the 
limitations caused by such assumptions will also be 
referred to together with results obtained in a low 
frequency oscillation case. 
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