Sonoluminescence and Bubble Dynamics in Phosphoric Acid: Comparison with Those in Sulfuric Acid

リン酸中のソノルミネッセンスと気泡ダイナミクス:硫酸との比較

Shin-ichi Hatanaka[†] (Grad. School of Informatics and Eng., Univ. of Electro-Comm.) 畑中 信一[†] (電通大院情報理工)

1. Introduction

Sonoluminescence (SL) is the phenomenon of light emission from acoustic cavitation bubbles at collapse, where acoustic energy is concentrated by 12 orders of magnitude to create flashes of light.¹⁾ Because liquid vapor may cushion the collapse and more energy may be consumed by endothermic bond dissociations of liquid vapor, SL in a variety of low-volatility liquids has been explored especially by Suslick and his colleagues. Then, Flannigan and Suslick have discovered extremely intense SL from a moving single-bubble cavitation in concentrated aqueous sulfuric acid (H₂SO₄) solutions,²⁾ which is a strongly hydrogenbonded liquid with very low vapor pressure and relatively high viscosity. According to the paper, under optimal conditions, the SBSL intensity from 85 wt% H₂SO₄ (aq.) under Ar can be increased 2,700 times compared to that from water under Ar, and the intenisy under Xe can be increased 1,500 times compared to water under Xe. The extremely high brightness of SL in H₂SO₄ suggested the study of similar liquids, of which aqueous phosphoric acid (H_3PO_4) is the only common example. Then, Xu and Suslick have discovered extremely intense SL from a moving single bubble in 65 wt% H₃PO₄ (aq.) with very strong molecular emission from excited OH radicals.³⁾ They determined the very high vibrational temperatueres of nealy 10,000 K by simulation of OH rovibrational spectra. On the other hand, the vibrational temperatures of 1,500 to 3,500 K were determined by simulation of SO in 85 wt% H₂SO₄.²⁾ Since the vapor pressure of 65 wt% H_3PO_4 (aq.) is two orders of magnitude higher than that of 85 wt% H₂SO₄ (aq.), there might exist a dominant factor for ultrabright SL other than low vapor pressure of liquids.

In this study, SL and bubble dynamics in H_3PO_4 during both single-bubble and multibubble cavitation are investigated, comparing with those in H_2SO_4 . From the experimental results, possible mechanisms for ultrabright SL will be discussed.

2. Experimental

Experiments were carried out in aqueous hatanaka@pc.uec.ac.jp solutions of H_3PO_4 and H_2SO_4 with various concentrations. In multibubble case, a commercial ultrasonic horn apparatus at 20 kHz (Branson, Sonifier 450) was used. Spectra of MBSL were measured in the range from 200 to 850 nm using a spectroscope (Hamamatsu, C8801) through a quartz glass fiber. In single-bubble case, a rectangular quartz glass cell with a bolt-cramped Langevin-type transducer at the bottom was used. The dynamics of single-bubble cavitation was observed by laser-light scattering and stroboscopic observation method. The details of the method and the experimental setup is described elsewhere.⁴)

3. Results and Discussion

Figure 1 shows photographs of MBSL in 85 wt% H₃PO₄ (aq.) under Xe for 10, 20 and 30 W/cm² in ultrasonic intensity by calorimetry in a well-lit room. The MBSL intensity in 85 wt% H₃PO₄ (aq.) was higher than that in 95 wt% H₂SO₄ (aq.), in spite of higher vapor pressure of 10^{-2} Pa for 85 wt% H₃PO₄ (aq.) than that of 10^{-4} Pa for 95 wt% H₂SO₄ (aq.). The corresponding MBSL spectra to the photographs in Fig. 1 are shown in **Fig. 2**. From spectral measurement, the MBSL intensity at 10 W/cm² in H₃PO₄ was about 1.5 times higher than that in H₂SO₄, although the spectra is not shown.

Fig. 1. MBSL photos in 85wt% H₃PO₄ (aq.) under Xe for (a) 10, (b) 20, and (c) 30 W/cm².

Fig. 2. Corresponding MBSL spectra in 85 wt% H_3PO_4 (aq.) to the photos shown in Fig. 1.

Figure 3 shows photographs of MBSL in 85 wt% H_3PO_4 (aq.) and those in 95 wt% H_2SO_4 (aq.) under Xe for 10, 20 and 30 W/cm² in the presence of 1 M sodium (Na) salt. The MBSL intensity in H₃PO₄ decreased by dissolving Na₃PO₄, in contrast to that in H_2SO_4 , which is remaining unchanged. The orange colored region of Na atom emission in H_3PO_4 is narrower than that in H_2SO_4 , where the filamentous structures of bubble streamers are not different between them. It is probably because the viscosity of 100 mPas for 85 wt% H₃PO₄ at 20°C is higher than that of 26 mPas for 95 wt% H₂SO₄, where Na emission may require unstable bubble oscillation.⁵⁾ The spectra in 1 M Na₃PO₄-H₃PO₄ aq. solution is shown in Fig. 4, where the emission of OH radicals is appeared. Figure 5 shows the comparison between phosphoric and sulfuric acid solutions.

Figure 6 shows radius-time curve of a sonoluminescence single-bubble in 35 and 55 wt% H_3PO_4 (aq.) ulder Ar. The pulse intensity of SBSL in 35 wt% H_3PO_4 was the almost same as that in water and is smaller than that in 55 wt%, where the computer simulation of SBSL intensity in 35 wt% has the maximum intensity because of viscosity.⁶⁾

4. Conclusion

The spectral intensity of SL produced by an ultrasonic horn at 20 kHz in 85wt% H₃PO₄ (aq.) was higher than that in 95wt% H₂SO₄ (aq.), in spite of higher vapor pressure. In the presence of Na salt, the Na atom emission region of SL in H₃PO₄ was different from that in H₂SO₄, despite that the path of bubble streamer were very similar. In single-bubble, the SL intensity in 30 wt% H₃PO₄, where the SBSL could reach the maximum due to the viscosity by simulation, was almost the same as that in water. The results suggest that a key factor may exist for bright SL other than vapor pressure and viscosity.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number 23560917.

References

- 1. B. P. Barber and S. J. Putterman: Nature. **352** (1991) 318.
- 2. D. J. Flannigan and K. S. Suslick: Nature **434** (2005) 52.
- H. Xu and K. S. Suslick: Phys. Rev. Lett. 104 (2010) 244301.
- T. Kozuka, S. Hatanaka, K. Yasui, T. Tuziuti and H. Mitome: Jpn. J. Appl. Phys. 41 (2002) 3248.
- S. Hatanaka, S. Hayashi, and P.-K. Choi: Jpn. J. Appl. Phys. 49 (2010) 07HE01.
- 6. A. Moshaii, M. Faraji, and S. Tajik-Nezhad: Ultrason. Sonochem. **118** (2010) 1148.

Fig. 3. MBSL photos in 1 M Na₃PO₄-H₃PO₄ solution for (a) 10, (b) 20, and (c) 30 W/cm², and in 1 M Na₂SO₄-H₂SO₄ solution for (d) 10, (e) 20, and (f) 30 W/cm² in ultrasonic intensity.

Fig. 4. Corresponding MBSL spectra to the photo for H_3PO_4 shown in Fig.2(b) in the bottom region and the top region (near the horn tip).

Fig. 5. Comparison of MBSL spectra between 1 M Na₃PO₄-H₃PO₄ and 1 M Na₂SO₄-H₂SO₄ in an ultrasonic cleaning bath at 32 kHz.

Fig. 6. Radius-time curve of a sonoluminescing single-bubble in 35 and 55 wt% H_3PO_4 (aq.).