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1. Introduction

The transient response analysis (the calculation 
of impulse response function) is important as well 
as the frequency characteristic analysis. Although 
the frequency characteristics have been widely uti-
lized in the classical theory, the importance of the 
time series analysis has been increased in recent 
years for ‘modern’ methodologies.

There are two types of representation methods 
for a system----one is lumped-parameter-based and 
the other is distributed-parameter-based. In order to 
analyze an elastic vibration system or an electro-
mechanical coupling system, the author has devel-
oped the framework of the analysis including only 
distributed parameters without any 
lumped-parameter components. 1-4)

In this paper, the principle of analyzing the im-
pulse response for an electromechanical coupling 
system using this framework----termed ‘complex 
series dynamics’----is discussed, and the advantage 
of this method over the conventional 
lumped-parameter-based framework is also dis-
cussed. 

2. Neumann series in complex series dynamics

In the framework of the complex series dynamics, 
the characteristic function is given by the probabil-
istic superposition of the infinite geometric series of 
matrices, ‘Neumann series’, in which the initial 
term and the common ratio reflect the boundary 
conditions of the system. The size of the matrix is N
by N in the case of a one-dimensional elastic vibra-
tion system and 2N by 2N in the case of a system 
with electromechanical coupling, where N is the 
number of spatial layer in the system.

The characteristic function is given by

where η0 and η are an initial seed value and a final 
resultant value, respectively, of energy mode---
elastic mode with N elements and dielectric mode 

with N elements, 2N elements in total, and Kin(j),
Kout(j), A0(j), R(j) (j is the label for distinguishing 
probabilistic paths) are matrices that reflect the 
boundary conditions of the system.

Equation (1) provides frequency characteristics 
of the system as a function of ω, where ω is an an-
gular frequency of the energy mode as a 
wave. (Both of A0(j) and R(j) are functions of ω.) 

In eq. (1), ω is a definite value, while the time t is 
indefinite, since infinite numbers of events that oc-
cur at different times are superposed into one. From 
the viewpoint of the uncertainty principle between 
frequency and time, indefinite time causes definite 
frequency.

In ref. 2, the impulse response of elastic 
mode without electromechanical coupling with die-
lectric mode was obtained as the following time 
series:

where ω was set to zero in A0(j) and R(j).
All of the resonance modes that can be driven are 

active (stiffness control) in the low frequency limit, 
and therefore, the situation of ω = 0 in the elastic 
mode is regarded as the situation of indefinite fre-
quency, which causes definite time, according to 
the uncertainty principle.

Equation (2) is ‘discrete’ in time domain, which 
means that the characteristic of the system is ‘peri-
odic’ in frequency domain, according to the funda-
mental theorem of Fourier transform. In other 
words, the method described with eq. (2) cannot be 
adopted in the case of ‘aperiodic’ frequency char-
acteristics. For example, when the electromechani-
cal coupling occurs, the frequency characteristic 
function of the system is not periodic any longer in 
the frequency domain, since the effect of coupling 
phenomenon is decreased as the frequency becomes 
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higher. The same can be said of the situation in 
which the dissipation of the system has frequency 
dependence. The aperiodic frequency characteristic 
function should cause a continuous impulse re-
sponse. 

3. Resolvent and its application

Equation (1) is equivalent to 

where I is a unit matrix whose diagonal elements 
are ones and the other elements are zeros, and eq. 
(3) includes a ‘resolvent’ in linear algebra in 
mathematics. Usually, a resolvent r(λ) is defined 
as a function of λ: 

for a matrix R. Apparently, the resolvent is equiva-
lent to Neumann series. When the determinant of
r(λ) is infinite:

λ gives the eigenvalue of R, from which the eigen-
vector is also determined.

In this study, this concept is used to obtain the 
impulse response of a system with electromechani-
cal coupling.

The value of ω, at which

corresponds to the eigenvalue (not real number, but 
complex number) of the system, ωn. The eigenvec-
tor of the system with spatial N elements, ηn, is also 
obtained for each of ωn. n is the label for an eigen-
state. Then, the impulse response of the system is 
simply given by

where η(t) is the impulse response of elastic mode 
with spatial N elements under the electromechanical 
interaction with dielectric mode, an is a scalar indi-
cating the degree of contribution of initial distribu-
tion of η(t)|t = 0 to the eigenvector ηn.

Practically, the complicated calculation of the 
determinant is not necessary, and from the peak 
value of the frequency characteristic function η(ω), 
ωn and ηn can be determined, and an is also deter-
mined from the spatial inner product between ηn
and η(t)|t = 0.

4. Comparison with lumped-parameter methods

The frequency characteristic function of the 
lumped-parameter circuit for an electromechanical 
coupling system has a pair of resonance and anti-
resonance in each resonance mode. At the antireso-
nance frequency, the admittance is reduced to the 
minimun, but the vibration level is not reduced as 
long as the electric source is connected to the sys-
tem. That is, the situation at the antiresonance fre-
quency is actually not ‘antiresonance’ from the 
viewpoint of energy, ----This can be shown exper-
imentally, for example, by measuring the vibration
level using a laser-optic method. 5) ----and therefore, 
the admittance does not represent the situation of 
vibration level and energy correctly. Therefore, the 
inverse Fourier transform of the admittance cannot 
give the impulse response of the vibration correctly, 
which is a harmful side effect of lumped-parameter 
dielectric capacitance C0, although the existence of 
C0 is inevitable to express the shift of acoustic 
speed due to the electromechanical coupling.

When the Q-value of the system is not so large, 
C0 also causes the difficulty in estimating the reso-
nance peak value and its frequency (an eigenvalue 
of the system). Although this difficulty can be re-
duced numerically and statistically, 6,7) the errors 
cannot be removed completely. 

The present method can evaluate ‘local’ transient 
response, while the lumped-parameter-based ones 
cannot. (In order to improve the spatial resolution 
of eigenvector, the value of N should be increased,
according to the Nyquist theorem applied to the 
spatial domain.)

References
1. M. Ohki: "Application of Complex Series Dynamics 
to Electromechanical Coupling System", Jpn. J. Appl. 
Phys., 50 (2011) 07HB05.
2. M. Ohki: "Impulse Response of Piezoelectric Trans-
ducer by Multiresolution Analysis of Energy 
Modes", Jpn. J. Appl. Phys., 46 (2007) 4474.
3. M. Ohki: "Probabilistic Superposition of Energy 
Modes for Treating 2N-Layered Mechanical Impedance 
Mismatch System", Jpn. J. Appl. Phys., 45 (2006) 4462.
4. M. Ohki: "Distributed-Parameter Based Treatment of 
Interaction Process between Elastic and Dielectric Ener-
gy in Piezoelectric Transducer", Jpn. J. Appl. Phys., 44
(2005) 8536.
5. M. Ohki, N. Shima and T. Shiosaki: "Optical Meas-
urement of Piezoelectric Vibration in Circular Rod and 
Disk Ceramics", Jpn. J. Appl. Phys., 31 (1992) 3272.
6. M. Ohki: "Estimation of Piezoelectric Equivalent Cir-
cuit Parameters Using Principle of Least Variance ", Jpn. 
J. Appl. Phys., 47 (2008) 4029.
7. M. Ohki: "More Precise Estimation of Capacitance 
Ratio in Electromechanical Coupling System", Jpn. J. 
Appl. Phys., 48 (2009) 07GB10.

－ 32 －


