Ultra Wide Band and High Frequency Resonators using SH Type Plate Wave in LiNbO₃ Thin Plate

LiNbO3薄板内のSH型板波を用いた広帯域・高周波共振子

Michio Kadota¹, Yasuhiro Kuratani², Tetsuya Kimura², Masayoshi Esashi¹ and Shuji Tanaka¹ (¹Tohoku University, ²Murata Mfg. Co. Ltd.)

門田 道雄¹, 倉谷 康博², 木村 哲也², 江刺 正喜¹, 田中 秀治¹(¹東北大学,²村田製作所)

1. Introduction

Tunable filters with wide tuning range are required by advanced mobile phones to simplify the wireless front-end circuit of a multiband or cognitive radio system [1]. Although various tunable filters were proposed, their tunable ranges were not sufficient for such applications [2]-[6]. To achieve wider frequency tunability, an ultra-wideband resonator is a key device. The most straightforward method is to use bulk or surface acoustic waves with large electromechanical coupling factor k^2 .

The authors reported that 0th shear horizontal (SH₀) mode of a plate wave in a 30° YX-LiNbO3 plate thinner than 0.1 λ (λ : wavelength) had an ultra-large coupling factor of 55% [6]. Also, the authors reported that 2 MHz range SH₀ mode plate wave resonators with an Al interdigital transducer (IDT) on a single or double side of a LiNbO₃ substrate had ultra-wide bandwidths of 26~29% and large impedance ratios of 92~98 dB between resonance and anti-resonance frequencies (f_r and f_a) [7]. The resonators were applied to a ladder type tunable filter in conjunction with variable capacitors, and achieved a tunable range of 13% [8]. Although this low frequency demonstration was promising, edge reflectors, which were used in the 2 MHz range resonators, cannot be used in high frequency devices, because the position accuracy of the edge reflectors (typically $< 0.1\lambda$) is difficult to guarantee. In addition, ripples between f_r and f_a due to transverse modes must be suppressed.

In this study, we fabricated and tested high frequency SH_0 plate resonators using an extremely thin LiNbO₃ plate to meet the frequency range of digital terrestrial TV band (470~770 MHz), in which cognitive radio is being standardized as IEEE 802.11af. Also, the problems regarding the ripples and the position accuracy of the reflectors were addressed using an apodized IDT and grating reflectors, respectively.

2. Design

SH₀ plate wave shows large coupling factor in a 30° YX-LiNbO₃ plate thinner than 0.1λ , whereas the phase velocity of SH₀ plate wave is as low as 5000 m/s as shown in Fig. 1. Therefore, a fine-pitched IDT on a very thin plate is required for a high frequency resonator with large coupling factor. The main design parameters of the SH₀ plate wave resonators are

shown in Table I with those of a low frequency resonator reported in Ref. [7]. The SH_0 mode plate wave resonators use a self-suspended 0.5 µm thick 30° YX-LiNbO₃ plate, on which an Al IDT and grating reflectors are fabricated, as shown in Fig. 2. The IDT is apodized in a diamond shape.

Fig. 1 Calculated phase velocity of plate waves on 30° YX-LiNbO₃ as a function of plate thickness.

Table I Design parameters of SH₀ mode plate wave resonators.

	Low freq. type [7]	High freq. type (This study)			
$f_{\rm r}$ (MHz)	1.8	430	460	530	560
Plate thickness (µm)	200 (0.1λ)	0.5 (0.06λ~0.08λ)			
λ (μm)	2000	6.2	6.4	7.43	7.75
IDT pairs	20	20	40	20	40
AR	0%	0%, 60% or 100%			
Metalization ratio	0.3	0.34			
Reflector	Edge type	Grating type			
Structure	IDT/LN/IDT IDT/LN	IDT/LN			

Fig. 2 High frequency SH_0 plate wave resonator fabricated on a 0.5µm thick 30° YX-LiNbO₃ plate (AR = 60%).

3. Result

Figure 3 shows the frequency characteristics of the fabricated resonators with λ of 6.4 µm. The resonators have different apodization ratios (AR) of 0% (i.e. no apodization), 60% and 100%, where AR is defined as 1 – (minimum aperture)/(maximum aperture). For example, the IDT shown in Fig. 2 has AR of 60%. Ripples between f_r and f_a were suppressed, when AR was 60% and 100%, whereas ripples were found without apodization as observed for the low frequency resonator. In exchange, the apodization needs to pay a small penalty for bandwidth and impedance ratio.

Figure 4 shows the frequency characteristics of 4 kinds of high frequency resonators shown in Table I with AR of 100%. Although the bandwidth and impedance ratio decreased slightly by apodization, as already mentioned, the impedance ratio as high as 80 dB and a wide bandwidths of 22% were achieved without ripples at high frequency ($f_r = 440 \sim 560$ MHz). To our best knowledge, this performance is the best achievement in this frequency range.

Although ripples between f_r and f_a due to transverse modes disappeared, spurious responses were observed in a frequency range higher than f_a , as shown in Figs. 3 and 4. Such spurious responses were not found in the low frequency resonator [7], and thus we inferred that the spurious responses were caused by a lack of the finger number of the grating reflectors. The plate wave might not reflect completely at the grating reflectors and partially reflect at the substrate edges, resulting in the spurious responses. It is expected that the bandwidth and impedance ratio would be also improved by optimizing the reflectors as well as the IDT. In addition, further improvement in the bandwidth is expected using IDT/LiNbO₃/IDT structure, but the fabrication is a challenging problem left for the future study.

Fig. 3 Frequency characteristics of resonators with 3 kinds of apodization, (a) AR = 0%, (b) AR = 60% and (c) AR = 100%.

Fig. 4 Frequency characteristics of high frequency resonators shown in Table I.

4. Conclusion

In our previous study, macroscale SH₀ mode plate wave resonators with an ultra-wide bandwidth and a large impedance ratio were designed, prototyped and evaluated. Based on the result, the following 3 issues were addressed in this study; (1) low frequency operation, (2) ripples due to transverse modes, and (3) reflection at free plate edges, which cannot be used for high frequency resonators. Our approaches are thinning a LiNbO₃ plate from 200 µm to 0.5 µm in thickness for (1), apodizing IDTs for (2), and using grating reflectors for (3). The fabricated high frequency resonators for TV white band ($f_r = 430 \sim 560$ MHz and $f_a = 450 \sim 670$ MHz) showed a wide bandwidths of 22% and a large impedance ratios of 80 dB and without ripples between f_r and f_a .

Acknowledgement

This research was supported by the Japan Society for the Promotion of Science (JSPS) through its "Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)."

References

- [1] H. Harada, IEICE, J91-B (2008)1320.
- [2] T. Komatsu, K. Hashimoto, T. Omori and M. Yamaguchi, Jpn. J. Appl. Phys. 49 (2010) 7HD24-1-4.
- [3] M. Kadota, T. Kimura and Y. Ida, IEEJ Trans. **131** (2011) 1108 (in Japanese).
- [4] M. Kadota, Y. Ida and T. Kimura, Jpn. J. Appl. Phys. 51 (2012) 07GC14.
- [5] H. Hirano, T. Kimura, I. P. Koutsaroff, M. Kadota, K. Hashimoto, M. Esashi and S. Tanaka, Int. Symp. Acoustic Wave Devices for Future Mobile Communication Systems (2012) 41.
- [6] M. Kadota, M. Esashi, S. Tanaka, Y. Ida and T Kimura, IEEE Int. Ultrason. Symp. (2013) 4PC1-3.
- [7] M. Kadota, T Ogami and T. Kimura, Jpn. J. Appl. Phys. 49 (2013) 07HD04-1.
- [8] M. Kadota, T. Ogami, T. Kimura and K. Daimon, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. (in press).