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1. Introduction 
The characteristics of electromechanical 

coupling phenomenon can be represented using 
lumped parameters, which is useful when the 
(global) characteristics in the transducer as a whole 
are observed. From the local point of view, however, 
the characteristics should be expressed with 
distributed parameters. The previous equivalent 
circuit models include some lumped parameters: 
For example, Mason's circuit includes a pair of 
positive and negative capacitance, , but the 
stored energy in  alone is meaningless. From 
the viewpoint of considering energy and its local 
property, another method is desired. The author has 
developed the method of the vibration analysis on 
the distributed-parameter basis, by considering the 
flow of energy and its superposition, and applied to 
some problems.1-3) Such process is expressed by 
multiplying some kinds of matrices with complex 
(non real number) elements and by considering the 
infinite geometric series of matrices, Neumann 
series, mathematically. This method is termed

In this study, the treatment of the 
above-mentioned coupling phenomenon is 
developed along our methodology in the case of 
multiple-layered system using matrix operation: 
The process of energy exchange between an elastic 
mode denoted by  and a dielectric mode denoted 
by is considered, in which and are
expressed as N-by-1 matrices, respectively, when 
N-layered system is considered. The coupling 
phenomenon is expressed with a 2N-by-2N unitary 
matrix mathematically or energy-conservative 
process physically. Two types of unitary processes 
are considered in order to treat the elastic-dielectric 
energy coupling. One process occurs at the 
boundary or edges of the layer inside the transducer 
in a spatially discrete manner, and the other process 
occurs along the layer in a spatially continuous 
manner. These two types of interaction should be 
distinguished in the theory (let us call the former 
''point interaction'' and the latter ''continuous 
interaction''), when there exist multiple layers inside 
the transducer. (In the treatment in ref. 1, since there 
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exists only one layer inside the transducer, we do 
not need this distinction.) 

2. Matrix Formulation 
In order to avoid the duplication of 

description in the previous studies and on account 
of limited space, our attention is focused on the two 
types of interaction process, point interaction and 
continuous interaction, mentioned above. 

In the case of the point interaction, the 
interaction process is represented with a matrix 
operation using a unitary matrix, denoted by P in 
this study: 

 (1) 

where p and  are the amplitude and phase of the 
coefficient for point interaction, respectively. In the 
case of one-layer system (N = 1), the two modes 
vary after the interaction as  

  (2) 

where the prime ( ' ) is added for the mode after the 
interaction, for the convenience of notation. In the 
case of N-layered system, P becomes a 2N-by-2N
matrix, in which the interaction of 

are described, where  and  are the elastic 
and dielectric modes in the ith layer, respectively.  

At the boundary of layer, the reflection and 
transmission of energy also occur. The reflection 
and transmission process is expressed with a 
scattering matrix, which describes the flow of  

,  (reflection) 
,  (transmission) 
,  (reflection) 
, (transmission) 
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between the 1st and 2nd layers, for example. This 
scattering matrix (denoted by ) is associated with 
matrix P in a cascade manner at the boundary of 
layer and constructs a new scattering matrix 
(denoted by S) in the form of 

   (3) 

On the other hand, in the case of the 
continuous interaction, the matrix has the form of 
the ''exponential'' of a matrix:  

,  (4) 

as a solution (integral) of a differential equation, 

   (5) 

in the case of , where  is a matrix that 
expresses the interaction process on infinitesimal 
interaction length , and the integral is spatially 
performed from  to , where  is an 
interaction length that is not necessarily equal to an 
actual spatial length.  

Since not only the energy exchange process 
but also the shift of phase and attenuation of 
amplitude of modes should be considered in a 
mixed manner inside the layer, the matrix A for this 
process is constructed with two types of matrices, 
one for the shift of phase and attenuation of 
amplitude, denoted by , due to pure propagation 
process, and the other for the energy exchange 
process, denoted by U, on which the energy should 
be conserved; that is, we set the form of 

.  (6) 

With regard to the formulation of , the 
integration of the infinitesimal propagation effect 
from  to  causes the total phase shift 
and amplitude attenuation, which can be described 
as  

, (7) 

where  and  are phase shifts as complex 
numbers for the elastic mode and the dielectric 
mode, respectively. 

By taking the matrix logarithm of eq. (7), 

,  (8) 

is obtained.  can be described as  

where  is an angular frequency of the mode as a 
wave, T and  are a propagation time and a loss 
factor, respectively, when the elastic mode 
propagates from  to .

Since the dielectric mode is regarded as a 
''non-propagating'' mode, the real part of 
should be set zero 1):

where  is a loss factor for the dielectric mode. 

With regard to the formulation of U, the 
integration of infinitesimal energy exchange 
between the two modes from  to  can 
be expressed as  

,  (9) 

which is also a unitary matrix, where u and  are 
the amplitude and phase of the coefficient for 
continuous interaction, respectively. 

By taking the matrix logarithm of eq. (9), we 
obtain 

,   (10) 

As a result, for N-layered system, the propagation 
of the modes is expressed as the following matrix 
D:

,    (11) 

The above matrices S and D are appropriately 
used for the construction of infinite geometric series 
(see Table I and Fig. 4 in ref. 2), and the calculation 
of not only resonance frequencies and resonance 
intensities but also the spatial distribution of modes 
becomes possible. 
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