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1. Introduction

Synthetic silica (SiO2) glass is widely used as important 
material for lithography systems of mass-producting 
semiconductor devices and for optical fibers in 
telecommunications.  Refractive-index homogeneity and high 
optical transmittance without defects are in essence required for 
optical-use SiO2 glasses, and durability to ultraviolet (UV) lights is 
also needed for optical components in the production systems 
working at UV wavelength.  Their characteristics are related not 
only to concentrations of dopants and/or impurities, such as OH 
and Cl, but also to fictive temperatures TF.  It is necessary to 
control TF to fabricate SiO2 glasses with desired optical properties.  
Conventionally, TF is used to be obtained by Raman spectroscopy 
with a measurement resolution of ±60°C [1] or infrared (IR) 
spectroscopy with ±15°C [2].  Their measurement accuracies are 
insufficient for evaluation in order to obtain SiO2 glasses with 
further improved optical characteristics.

In this paper, we develop an indirect, ultrasonic method of 
precisely measuring TF for SiO2 glasses by our ultrasonic 
microspectroscopy (UMS) technology, taking two kinds of 
specimens with different OH concentrations.

2. Specimens

Specimens were prepared from commercial SiO2 glasses 
fabricated by the vapor phase axial deposition (VAD) method 
(ED-B, Tosoh Quartz Co.) and by the direct method (C-7980, 
Corning Inc.).  OH concentrations, analyzed by IR spectroscopy 
[3], were 0 wtppm for ED-B and 1000 wtppm for C-7980.  The 
characteristic temperatures of strain and annealing points (Ts and 
Ta) for both types of glasses were different, reflecting the 
difference in OH concentration.  Dimensions of the specimens
were 60 mm � 60 mm � 15 mmt.

The specimens were heat-treated in air using an electric furnace.  
They were kept at the desired annealing temperatures for 
sufficiently long time, considering the structural relaxation times 
for each specimen [4], and cooled in the furnace by turning off the 
heater.  They were processed by sandwiching them between two 
silica glass plates with dimensions of 70 mm � 70 mm � 10 mmt,
in order to reduce TF distributions in the cooling processes.  
Annealing temperatures TA were 1050°C, 1100°C, 1150°C, and 
1200°C for ED-B, and 900°C, 1000°C, 1050°C, and 1100°C for 
C-7980.  Both surfaces of the specimens were optically polished 
with a thickness of 10 mm after the heat-treatment.
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Fig. 1.  Annealing temperature 
dependences of acoustic properties of 
SiO2 glasses.
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3. Experiments and discussion

Leaky-surface-acoustic-wave velocities (VLSAW)
were measured by the line-focus-beam ultrasonic 
material characterization (LFB-UMC) system at 225 
MHz [5].  Longitudinal and shear wave velocities (Vl,
Vs) were measured by the plane-wave UMC system in 
a frequency range of 50-250 MHz [6].  Densities (�)
were measured by the Archimedes method. 

TA dependences of acoustic properties are shown in 
Fig. 1.  We observed linear relationships between 
acoustic properties and TA in temperature ranges up to 
about 50°C lower than the temperatures of Ta for each 
specimen, deviating from a straight line at higher
temperatures of TA.  This was caused by a fact that 
structural relaxation times became smaller as TA of 
the specimens became larger [4] and their TF became 
smaller than TA in their cooling processes.  Vl varied 
most significantly among the acoustic properties.

It was reported that � is in a linear relationship with 
TF for SiO2 glasses [7, 8].  We plotted the data of Vl

and �, as shown in Fig. 2, and found linear 
relationships for both types of specimens, and 
confirmed that Vl changes follow TF changes properly.  
We estimated TF through Vl.  We observed linear 
relationships between acoustic properties and TF.

Vl varied most sensitively with TF, from the results 
of resolutions of TF by the acoustic properties 
measurements.  The resolutions were 0.3-0.4°C, and
they were 40-150 times higher than the conventional 
methods [1, 2].  So, Vl measurements are extremely 
useful for evaluation of TF.

Figure 3 shows the results of two-dimensional 
VLSAW distributions for a C-7980 specimen annealed at 
1000°C.  Maximum velocity differences were 1.49 
m/s and 1.26 m/s for top and bottom surfaces, 
respectively.  These correspond to TF distributions of 
278°C and 236°C, respectively.  

4. Summary

We developed an evaluation method of TF for SiO2

glasses.  We clarified that Vl measurements are 
extremely useful with a resolution of TF 0.3-0.4°C, 
and VLSAW measurements can provide 
two-dimensional TF distributions on the specimen 
surfaces.

Glass manufacturers can evaluate TF of fabricated 
glass ingots, TF distributions, and their fabrication 
processes by this ultrasonic method.
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Fig. 2.  Relationships between longitudinal 
velocities and densities for SiO2 glass specimens.
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Fig. 3.  LSAW velocity distributions for a 
C-7980 specimen annealed at 1000°C (f = 225 
MHz).
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