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1. Introduction 
Helmholtz resonator (HR) has been used to 

low-frequency sound and noise absorption for a 
long time because of its resonance characteristics.1

A typical HR contains a cavernous space (cavity), 
in which there is a small tube (neck) estabilishing a 
transmission between the interior and exterior gas. 
The small tube opening results in long-wavelength 
vibrations.2 An HR array can be a small impdeance 
mismatch composite with air for airborne sound and 
used to build a convergent lens with good focusing 
effect.3 Moreover, sound energy harvesting utilizing 
an HR with a piezoelectric backplate had also been 
demonstrated.4 We note that, up to now, attenuation 
in a solid-type HR array has not be studied. 

In this paper, propagation of elastic wave in a 
thin plate with square-array HR is investigated. It is 
shown that the resonators can open up not only the 
Bragg gaps but also low-frequency resonance gaps, 
and the band-gap frequencies can be tuned by the 
geometric sizes of the neck and cavity of the HR. 

2. Model and Method of Calculation 
As shown in Fig. 1, the Helmholtz resonators 

consist of two cylinder segments (i.e., the neck and 
the cavity) with different lengths and radii. Their 
geometrical parameters are labeled as follows: the 
length and radius of neck are l and r, respectively, 
and those of cavity are L and R, respectively. The 
considered phononic structure is composed of the 
Helmholtz resonators grafted periodically on a thin 
plate of thickness h, and the resonators are arranged 
in square lattice with a lattice spacing a. To study 
the acoustic forbidden bands in the structure, the 
calculations of dispersion relations and transmission 
spectra are conducted. The dispersion relations are 
calculated for the infinite system utilizing a finite 
element (FE) method, in which only the unit cell 
(Fig. 1) is meshed, and the Bloch periodic boundary 
conditions (PBCs)5 are implemented based on the 
Bloch theorem. The PBCs define a wave number 
related phase relation on the boundary between 
adjacent cells and are respectively applied on the 
four lateral faces of the unit cell. By varying the 
wave vector in the first Brillouin zone and solving 
the eigenvalue problem, the dispersion relations and 
eigenmodes are obtained. 
------------------------------------------------------------ 
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Fig. 1  Schematics of the unit cell of the PC plate with a 
solid Holmholtz resonator.  

To calculate the transmission spectra, a finite 
structure containing N layers of resonators equally 
spaced out with the distance a along the x-direction
on the thin plate is considered. Elastic plane waves 
with single frequency are continuously excited by 
an associated monotonic line source and impinge to 
the structure along the x-direction. To prevent wave 
reflections from the domain boundaries, the perfect 
matching layers (PMLs) attenuating wave energy 
are implemented as extended domains. By varying 
the excitation frequency of the line source, energy 
spectra of transmission through the finite structure 
can be obtained.5

3. Results and Discussion  
Figure 2 shows the dispersion relations of the 

Helmholtz resonator phononic crystal plate (HRPC 
plate). The whole structure is assumed to be made 
of steel. The mass density, Young’s modulus, and 
Poisson’s ratio are set to be 7780 kg/m3, 226 GPa, 
and 0.29, respectively. In the calculation of Fig. 2, 
a=10 mm, h=1 mm, r=3 mm, l=1 mm, R=4.5 mm, 
and L=4 mm are assumed, respectively. 

Fig. 2  Dispersion curves with two complete band gaps 
of elastic waves in the HRPC plate.
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Fig. 3  Gap maps as a function of the HR geometrical 
parameters. Band gap variations with the changes of the 
cavity radius R (a), cavity length L (b), neck radius r (c), 
and neck length l (d), respectively.  

In Fig. 2, two complete band gaps are found. 
The lower one is about 26–30 kHz and the upper 
one 118–144 kHz. It can be shown that the lower 
complete band gap results from the resonance of the 
resonators, while the upper gap is formed mainly by 
the Bragg diffraction. By the resonance, the lower 
gap frequencies are as low as about one-fifth of the 
higher gap frequencies. Note that when the size of 
the unit cell is doubled or larger, the frequencies of 
the lower gap can be down to the audible regime, in 
which the sound induced vibrations can be blocked 
with the proposed HRPC solid structure. 

Figure 3 shows the gap maps as a function of 
the geometric factors R, L, r, and l, of the resonators, 
respectively. It can be observed that the resonance 
band gap width and frequencies are much more 
significantly related to these factors than the Bragg 
gap. Recall the well-known equation evaluating the 
lowest resonance eigenfrequency fr of an HR for 
fluid:

2

22r
c rf

R Ll
,              (1) 

where c is the sound speed of the fluid. The value of 
the resonance gap frequencies follow similar trends 
predicted by Eq. (1), but it can not be worked out 
with the formula since the neck has to be small and 
dispersive wave velocities in the solid resonator has 
to be considered. From Fig. 3, the neck radius r is 
the most decisive factor for the resonance (lower) 
gap frequency variation. In Fig. 3(c), the mid-gap 
frequency of the resonance gap has 380% change at 
most. It can be reduced to 20 kHz when r=1.75mm.  

Fig. 4  Transmission spectra of elastic wave through an 
eight-cell and a single cell finite HRPC plate structures.  

The transmission spectra for elastic waves 
propagating through an 8-layered HRPC (i.e., N=8)
are shown in Fig. 4. Solid curve denotes that the x-,
y-, z-polarized line sources are given simultaneously, 
and dashed curve denotes the y-polarized source is 
applied only. It is observed that over 60 dB energy 
attenuation occurs within the band gap frequencies 
predicted by the dispersion relations of the infinite 
system. Attenuation in the partial band gap in the

X direction is also observed. Moreover, the case of 
the y-polarized line source exhibits more and wider 
gaps, which correspond to the deaf bands due to the 
ineffective excitation of the associated eigenmodes 
in the HRPC plate. The transmission for the case of 
single HR (i.e., N=1) is also plotted in Fig. 4 (bold 
solid curve). A dip is found near the bottom edge of 
the resonance gap which reveals the fact that energy 
at the resonance frequency is considerably reflected 
by the HR due to resonances. As a result, the square 
HR array creates the low-frequency resonance gap. 

4. Conclusion
In this paper, low-frequency forbidden bands 

of elastic waves in a square HR array on a thin plate 
are presented. The resonance characteristics to open 
the band gaps are demonstrated. The neck radius is 
recognized as the most decisive factor to vary the 
resonant gap frequency. Transmission spectra show 
evident results of resonance and attenuation within 
the band gaps of finite HRPC systems. 
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