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1. Introduction 

Visco-elasticity is one of the important 
properties of soft condensed materials describing its 
mechanical response. The visco-elasticity is a 
variable depending on the speed of the medium 
deformation, of which behavior is described usually 
in terms of two aspects; the rheological curve and 
the ultrasonic spectroscopy. These two studies are 
composed of different measurement techniques, but 
share the same concept that the viscoelasticity 
should be represented as the function of the 
frequency or the inverse of the deformation time. 

The rheology has a technical advantage over 
the ultrasonic spectroscopy that it can measure the 
small viscosity as low as 10-3 Pa s, which is 
approximately that of pure water. The ultrasonic 
absorption due to the shear viscosity of water is in 
the order of 10-2 m-1 at 1 MHz, that is too small to 
be accurately observed. 

It is also important that the rheology 
measurement determines the low frequency limit of 
the ultrasonic propagation in materials with 
different measurement technique; complementary 
use of those two techniques is quite effective for the 
mechanical science of materials. To be honest from 
the standpoint of the rheologist, however, the 
measurement of the low viscosity is still difficult 
also for the rheology at present. 

2. Measurement of low viscosity 
EMS (Electro-Magnetically Spinning Sphere) 

viscometer is the recent invention, which supplies 
us easy measurement of the viscosity depending on 
the shear deformation rate. We are trying to expand 
the measurement range towards both lower and 
higher viscosities. In this paper, we described the 
application of EMS to the measurement of low 
viscosities less than 1 mPa·s. 

Aqueous solutions of materials are of course 
the important stuff for the chemical industry as well 
as the bio-engineering. The viscosity of the solution 
is generally more or less larger than that of the 
solvent and the resolution of 10 % at the viscosity 

=1 mPa·s would be enough for the application to 
the above promising industrial fields. 

The lower limit of the viscosity measurable by 

EMS system is determined by the condition that the 
torque due to the surrounding viscosity overcomes 
that of the friction between the bottom of the probe 
sphere and the sample cell. The former is 
proportional to the third power of sphere radius, 
while the latter to the fourth, and the condition is 
satisfied for an enough small sphere. As for pure 
water at the sphere rotation of 10 rps, radius of 1 
mm for aluminum sphere is the boundary of the 
condition. It shows, in other words, that the 
viscosity of water cannot be determined with 
satisfactory accuracy in the present EMS system. 

To settle the problem, let us consider the flow 
field of the medium around the spinning sphere at 
the bottom of the cell. The steady flow field around 
the sphere set in infinite medium is analytically 
given as  

3 2sin ( / )v R r , 0v , 0rv ,
where R is the sphere radius,  the angular velocity 
of the sphere. The polar coordinate is taken so that 

=0 and  correspond to the sphere bottom and top, 
respectively. The geometry is schematically shown 
in Fig.1. The viscous torque applied to the surface 
area of the sphere between d~  is 

3 3( ) 6 sinT d R d  and the whole torque is 
then calculated to 38 RM .

Here, let us consider the effect of the bottom 
touching with the sphere. In the vicinity of the 
bottom and =0, the sphere surface is approximated 
to the parabola. The shear rate at the gap of the 
sphere and the bottom is 2 / sinr  and the 
viscous torque is calculated to     

0~sin4 3 dRT .
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Fig.1 Schematic view of the geometry used in the 
calculation. 
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The torque T’( ) should be analytically connected 
to T( ) as  increases towards 2~ .

We can show with the above formulas that the 
torque applied to the surface area in the vicinity of 
the sphere equator is dominant as the resistant 
torque due to the viscosity. The excess amount of 
T’( ) over T( ) would give rough estimation of the 
contribution from the bottom effect to the whole 
viscosity torque, which is found as large as 1/10 
from the numerical calculation. Other important 
information obtained from the numerical approach 
to the flow field is that the torque applied in the 
region of / 4 3 / 4  has the portion more 
than 3/4 of the total torque. 

It would, therefore, be a simple idea to 
emphasize the viscous resistant torque for the low 
viscosity sample that the shear deformation rate is 
increased by confining the sphere in the thin 
cylinder. 

The shear deformation rate around the sphere 
given by ( / / )r v r v r  is 33sin3 rRr ,
which reaches as far as the distance R from the 
sphere surface. Restricting the space of medium 
flow by inducing thin cylinder with in the gap R
from the surface, the apparent torque due to the 
viscosity would increase by the factor of (R/ R).

Let us roughly estimate the torque applied to 
the sphere confined in a cylinder with the inner 
diameter R R . Here, we ignore the effect of the 
bottom of the sample cell. From the symmetry, the 
shear rate at the sphere equator is 

2 2 2
0 02 /( )R R R , where the angle  is taken as 

/ 2  and 0R R R .
It would be natural to consider that the shear 
deformation in the gap between the sphere and the 
cylinder is dominant to determine the torque. The 
gap decreases with increasing  and we cut off the 
summation of the torque at the angle c, which 
gives the gap of (1 ) R ,  being a constant in 
the order of unity. The cut off angle c is then given 
by (1 cos )cR R . It means that the sphere is 
approximated to a disk with the radius R and the 
thickness 2 sin cD R , and with the condition of 

RR ~ , D is given by 8D R R . By 
substituting this relation, we obtain the torque as 

34 2 ( / )T R R R
The result shows that the torque increases with 
decreasing gap as 21~ RRT . Roughly, the 
value of 10RR  enhances the viscous torque 
apparently by the factor of 10 .

3. Experiment 
Here, we briefly describe the principle of the 

EMS viscometer. A metal sphere is immersed in the 
sample, which works as a probe of the viscosity. 
Rotating magnetic field with the magnitude of 100 
mT is applied to the sphere and the Lorentz 
interaction between the induced current and the 
magnetic field works so that the sphere rotates 
following the rotation of the magnetic field. The 
relation between the applied torque and the 
revolutional speed gives the viscosity as a function 
of the sphere rate. 

To examine the suppression of the rotation of 
the confined sphere in a small space, we prepared a 
cylinder with the inner diameter of 2.1 mm made of 
metal, whereas the sphere is made of aluminum and 

has the diameter of 2.0 mm. 
Figure 2 shows the rotational speed of the 

sphere depending on the difference between the 
revolution of the magnetic field and the sphere, 
which is proportional to the applied torque. The 
results obtained for the sphere in a 2.1 mm diameter 
cylinder and the usual sample tube with the 
diameter of 6.0 mm are represented by the closed 
and open circles, respectively. The sample is the 
viscosity standard liquid of =1.0 Pa s. 
The rotation in the thin cylinder is apparently 
slower than that in a free space due to the effect of 
the wall in the vicinity of the sphere surface and the 
ratio of suppression is bout 3.7, which roughly 
agrees with the value of 3~2 RR . The result 
shows that the thin cylinder successfully enhances 
the torque due to the sample viscosity. It would be 
then possible to improve the accuracy and the 
resolution of the measurement for the lowly viscous 
liquids. 
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Fig.2 Relation between the sphere rotation and applied 
torque for the gap of R=0.1 (closed circles) and 2.0 mm 
(open circles). 
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