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1. Introduction 

To date, time domain numerical analysis of 
acoustic fields has become investigated widely as a 
result of recent computational progress[1-6]. Some 
techniques have been proposed as an acoustic field 
calculation method; the finite difference time 
domain (FD-TD) method[1-3] is very widely used 
for time domain numerical analysis. Many results 
using numerical analyses of sound propagation 
have been reported by FD-TD method.  

The standard FD-TD method based on Yee’s 
algorithm, however, causes numerical dispersion 
error due to using second order finite difference 
(FD) approximation. To overcome this problem, 
FD-TD methods using higher order spatial FD have 
been proposed. Moreover, compact FD was 
developed as a more accurate schemes for 
numerically solving differential equations[7]. 

In the FD-TD simulation, it determines the 
calculation accuracy how to calculate the value of 
the spacial derivatives f ’(i x) on the discretized 
grids. Higher order FD-TD methods yield superior 
accuracy in exchange for a little more complicated 
formulation. Especially, a tridiagonal or 
pentadiagonal linear system must be solved to 
calculate the derivatives of the compact FDs. The 
implementation of pentadiagonal is quite 
complicated. Therefore, this calculation cost is a 
bottleneck of the development of acoustic 
simulation using compact FD-TD method. 

In this study, we propose the fast and efficient 
calculation method of compact FDs employing a 
recursive filter. The recursive filter is based on 
z-transformation and its recursive filtering 
algorithm[8]. 

2. Acoustic Simulation Using Compact FD-TD 
Method

The compact FDs are obtained by relation 
equations of the surround values and their 

derivatives, which are given by the following 
equation: 
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     (1) 
Here,  is the grid size of FD-TD calculations. 

As compared with the central FDs of the 
same order, which use only surround values, the 
compact FDs provide higher accuracy [7]. That is 
the parameters of Eq. (1) are determined by relation 
equations of values and their derivatives using 
Taylor series. 

For example, relation equations for the 
fourth-order and eighth-order compact FDs are 
given by Eqs. (2) and (3), respectively 
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where =6114/25669, =(354 -75)/2614, a=(3795 
0-39275 )/31368, b=(65115 -3550)/20912. As 
shown in these equations, the fourth-order and 
eighth-order compact FDs are respectively required 
to compute tridiagonal and pentadiagonal matrices. 

3. Fast Calculation Method of Compact FD-TD 

We present the efficient calculation method 
of compact FDs employing a recursive filter. Now, 
by assuming 
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Eq. (1) is rewritten for deconvolution form as 
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Then, 1
fdh  is a symmetrical stable filter. 

Therefore, the efficient implementation using 
recursive filtering algorithm can be employed to 
calculate derivatives in the compact FDs according 
to:
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This makes it possible to solve pentadiagonal 
(tridiagonal) scheme by using the recursive filter 
two times (one time). In interpolation of order 2K+1,
by using z transform for Eq. (4), the inverse basis 
function 1

fdh  can be a symmetrical stable filter of 
order 2K with specific pole values zk (k = 1, …, K).
Its similar implementation for B-spline 
interpolation using recursive filtering algorithm has 
be also provided. 

Now, the specific pole values zk of the forth 
order and sixth order compact FDs, which is used 
for the recursive filtering algorithm, are provided as 
follows:

i) the forth order compact FD:  
z1 = -0.0455488499 
ii) the eighth order compact FD:  
z1= -0.2363652294, z2 = -0.0160419595. 
Thus, by employing the recursive filtering 

algorithm for the compact FDs, we can obtain the 
efficient calculation method of highly accurate 
derivatives which has almost as large computational 
cost as the conventional methods. 

4. Results and discussion 

We show the numerical results obtained using 
the above compact FD-TD analysis by recursive 
filtering algorithm. Calculation parameters are: the 
direction of acoustic field propagation, x (1D 
analysis); grid size, x = 0.05 m; number of grid 
points, Nx =20000. 

Figure 1 shows the sound pressure 
distribution obtained using FDTD analysis at t =
0.81 s, where  =1.21 kg/m3 and K = 1.4236×105 Pa.
Here, the initial pressure at t = 0 is given as 

2( 0)x xp e [N/m2]. (48  x 500) In this equation, 
1/20 and 0x 500. The results obtained using 

the eighth order compact FD-TD method agree well 
with the analytical solution. Here, in this calculation, 
we use time step t =1.2×10-5 s (i.e., CFL=0.0823). 
On the other hand, other methods cause numerical 
dispersion error. 
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Recursive filtering algorithm of fourth order 
compact FD approximately has a complexity of 6
Nx flops (3Nx  multiplications + 3Nx adds). This 
algorithm doesn’t require matrix decomposition 
processes like Gaussian elimination or LU 
factorization.

5. Conclusion

This study examines the fast and efficient 
calculation method of compact FDs employing a 
recursive filtering algorithm. The compact FD-TD 
methods are a low-dispersion scheme. By recursive 
filtering algorithm we can implement the higher 
order compact FD-TD analysis as a simple code.  
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Fig. 1 Distribution of the sound pressure at t = 0.81 s; 
illustrates standard FDTD  ( t =1.35×10-4 ,
CFL=0.926), FDTD(2,4) ( t =2.7×10-5 ,CFL=0.185), 
4th order compact FD-TD ( t =2.4×10-5, CFL=0.15), 
8th order compact FD-TD ( t =1.2×10-5, CFL=0.0823.
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