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1. Introduction 
There have recently been a number of studies 

of elastodynamic problems using the finite-
difference time-domain (FDTD) method[1]. FDTD 
method is first introduced by Virieux[2] as the 
velocity-stress finite-difference or staggered grid 
finite-difference formulation. A grid for conven-
tional FDTD is shown in Fig.1(a). This method has 
several desirable features. In FDTD formulation, 
Navier’s equations are decomposed to a set of 
first-order partial differential equations with respect 
to velocity and stress. The staggerd grid finite-
difference formulation has practical advantage for 
its stability and accuracy[3]. Most of previous 
studies of FDTD simulation, however, assumed 
linear elastic bodies. Recent research has demon-
strated that nonlinear ultrasonic waves can be used 
to evaluate the material degradation sensitively. In 
this regard, it is important to gain understanding of 
the nonlinear response in ultrasonic wave propa-
gation.  

In the present study, a formulation to deal 
with finite amplitude waves based on FDTD 
method is presented. The kinematic as well as 
material nonlinearities are considered in this 
formulation, employing the expression of strain 
energy by Landau and Lifshitz[4]. The solid is 
assumed to be isotropic.  

Some results of numerical simulation applied 
to Lamb waves are shown below based on this 
formulation. The dispersion curves constructed by 
the numerical results are compared to the analytical 
ones given by the Rayleigh-Lamb frequency 
equations. Furthermore, in the situation where a 
condition[6] of phase matching of fundamental and 
harmonic Lamb modes holds, cumulative harmonic 
generation is demonstrated as one of nonlinear 
effects in Lamb waves.  

      (a)                        (b) 

Fig.1 Geometry of (a) the conventional FDTD grid and 
(b) the FDTD grid for nonlinear simulation 

2. Equations of nonlinear elastodynamics and 
discretization 

To deal with finite amplitude waves, two 
sources of nonlinearity should be taken in account: 
the material nonlinearity and the kinematic nonlin-
earity. To include the former, we consider the con-
tribution of the terms in the strain energy density 
which are cubic in the strains. The strain energy 
density W is given by 
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where ρ0 is the mass density in the unstressed 
configuration, Eij is the Lagrangian strain tensor, Eij 
= 1/2 (∂ui/∂Xj + ∂uj/∂Xi + ∂uk/∂Xi ∂uk/∂Xj) and Cijkl
and Cijklmn are the second- and third-order stiffness 
tensors, respectively. The equations of motion can 
be written by [5]
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where Xi are the Lagrangian (or material) coordi-
nates, vi denote the velocity, ui are the displacement 
and Pij are the components of a non-symmetric 
tensor known as the first Piola-Kirchoff stress 
tensor. In this formulation, Pij need the spacial 
gradients of the displacement. For this reason, the 
displacement is calculated by the integral of the 
velocity. The grid for this formulation is shown in 
Fig.1(b). Given that the solid is isotropic, the strain 
energy density W is given by following equation: 
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where λ and μ are the Lamé elastic constants and A,
B and C are the third-order elastic constants used by 
Landau and Lifshitz[4]. The stiffness tensors in 
Eq.(1) and (3) are given by 
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where�δij is the Kronecker’s delta and Iijkl (�ik��jl
+��il��jk)/2.  

3. Application to Lamb wave propagation  
We show the numerical results obtained by 

using the above formulation. The simulation model 
is a 2-dimensional cross section of aluminum plate 
(2mm thick, 400mm long, cL=6350m/s, cT=3130 
m/s). The grid size is Δx=0.02mm and the number 
of the grid points are 20000×100. The incident 
wave is a sinusoidal wave and is excited from one 
side of the plate. The simulation was performed by 
increasing the frequency of the incident wave from 
0.5 to 5.0MHz. The results are analyzed in the fre-
quency-wave number (f-k) plot obtained by 2-
dimensional Fourier Transform. The plotted points 
in Fig.2 denote the peaks of the f-k plot from the 
numerical simulation and the solid and dashed lines 
are the theoretical dispersion curves which are solu-
tions of the Rayleigh-Lamb frequency equations. 
The plotted points generated by the numerical sim-
ulation show good agreement with the theoretical 
curves. This indicates the validity of this formula-
tion. 

Fig.2 f-k peaks of the numerical results and the analytical 
dispersion curves by the Rayleigh-Lamb equations. 

In aluminum plate, a Lamb wave (S1 mode 
and 1.80MHz) is expected to generate harmonics in 
a cumulative manner[6]. We conducted numerical 
simulations when S1 mode Lamb wave was excited 
with the fundamental frequencies of 1.80 MHz. 
Fig.3 shows the result of the 2-dimensional Fourier 
transform. Solid and dashed lines in Fig.3 denote 
the theoretical dispersion curves. In this Figure, we 
can observe the second harmonic (S2 mode, 
3.60MHz) generated from the fundamental mode. 
The amplitude ratio of the second harmonic and the 
fundamental wave was computed and shown in 
Fig.4 as a function of the propagation distance of 

the fundamental Lamb wave. The relative ampli-
tude of second harmonic increases linearly as a 
function of the propagation distance. This shows 
that the second harmonic is generated in a 
cumulative manner. 

Fig.3 f-k distribution by the numerical simulation  
at the propagation distance of 100 mm. 
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Fig.4 Variation of the relative amplitude of the second 
harmonics with the propagation distance. 

4. Conclusion 
A numerical formulation of the FDTD meth-

od for finite amplitude ultrasonic waves has been 
derived. The elastic body is assumed to be isotropic. 
The kinematic nonlinearity and the material non-
linearity based on the strain energy by Landau and 
Lifshitz are considered. The results of numerical 
simulation based on this formulation gave good 
agreement with the theoretical dispersion curves. 
This model can also simulate the cumulative second 
harmonic generation in Lamb waves.  
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