Low temperature elastic constants and piezoelectric coefficients of LiNbO₃ and LiTaO₃

LiNbO₃およびLiTaO₃単結晶の低温域における弾性定数と圧電 定数

Ryuichi Tarumi[†], Tomohiro Matsuhisa, and Yoji Shibutani (Department of Mechanical Engineering, Osaka University)

垂水 竜一[†],松久 朋弘,渋谷 陽二 (阪大 工)

1. Introduction

Recently, one of the authors (R.T.) investivated low temperature elastic constants C_{ii} and piezoelectric coefficients e_{ii} of point group D₃ type piezoelectric crystals, α -SiO₂ (α -quartz) and La₃Ga₅SiO₁₄ (langasite), by resonant ultrasound spectroscopy (RUS).^{1,2} This study revealed that both the α -quartz and langasite show unusual elastic softening below ambient temperature and that the softening can be explained from internal displacements caused by thermal contraction. It is also found that piezoelectric coefficients e_{ii} of the crystals depends significantly on temperature. This is due to the internal displacements; e_{ii} are sensitive to the location of ions in unit cell. It is reasonable to suppose that similar phenomena would appear in piezoelectric material which have a different point group symmetry. However, as far as the authors knowledge, a systematic work on the subject has not been conducted yet. The aim of this study is to investigate the complet set of elastic constants C_{ij} and piezoelectric coefficients e_{ij} of LiNbO₃ and LiTaO₃ single crystals at low temperatures. Since these piezoelectric crystals belong to C_{3v} point group symmetry, temperature dependence of C_{ij} and e_{ij} would be different from those obtained from the D_3 type crystals; α -quartz and langasite.

2. Experimental Procedures

2-1. Crystallography of LiNbO3 and LiTaO3

LiNbO₃ and LiTaO₃ belong to the trigonal class with its point group symmetry of C_{3v} (space group symmetry is *R*3*c*). The independent elastic and piezoelectric components are C_{11} , C_{12} , C_{13} , C_{14} , C_{33} , C_{44} , e_{15} , e_{22} , e_{31} , and e_{33} . In matrix notations these are

$$C_{ij} = \begin{pmatrix} C_{11} & C_{12} & C_{13} & C_{14} & 0 & 0 \\ C_{12} & C_{11} & C_{13} & -C_{14} & 0 & 0 \\ C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\ C_{14} & -C_{14} & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & C_{14} \\ 0 & 0 & 0 & 0 & 0 & C_{14} & C_{66} \end{pmatrix},$$

and
$$e_{ij} = \begin{pmatrix} 0 & 0 & 0 & 0 & e_{15} & -e_{22} \\ -e_{22} & e_{22} & 0 & -e_{15} & 0 & 0 \\ e_{31} & e_{31} & e_{33} & 0 & 0 & 0 \end{pmatrix}.$$

Table I summarizes dimensions and mass-density ρ of the LiNbO₃ and LiTaO₃ single crystals used in this study. Note that the *z*-axis corresponds to the *c*-axis of the unit cell.

Table I. Dimensions and mass-density of LiNbO₃ and LiTaO₃ single crystals.

	x	у	Ζ	ρ.
	(mm)	(mm)	(mm)	(kg/m^3)
LiNbO ₃	9.97	10.03	10.01	4631.7
LiTaO ₃	10.07	10.07	10.03	7446.1

2-2. RUS measurement

Low temperature elastic constants C_{ii} and piezoelectric coefficients e_{ii} of LiNbO₃ and LiTaO₃ single crystals are determined by RUS. A single crystal specimen is mounted on tripod type ultrasound transducers. One transducer excites ultrasound vibration to the specimen and another one detects the vibration amplitude. Free vibration resonance spectrum is obtained by frequency sweep with a step of $\Delta f = 10$ Hz for LiNbO₃ and $\Delta f = 6.6$ Hz for LiTaO₃. Resonance frequencies are determined by least-square fitting of resonance peaks to Lorenz function. Note that the measurement accuracy of resonance frequency is usually better than 10^{-5} . The RUS unit is set in a cryogenic chamber and which controls the temperature from 4 to 300 K with the accuracy of

[†]tarumi@mech.eng.osaka-u.ac.jp

0.1 K. The temperature step is $\Delta T = 10$ K for LiNbO₃ and $\Delta T = 5$ K for LiTaO₃.

3. Results and Discussion

3-1. Low temperature C_{ij} and e_{ij}

Figures 1 shows low temperature elastic constants C_{ij} and piezoelectric coefficients e_{ii} of crystal obtained by LiNbO3 single RUS measurement. As seen from the figure, all elastic constants show usual monotonic increasing with decreasing temperature. Piezoelectric in coefficients show monotonic increasing too, and hence, there is no unusual temperature behavior in C_{ii} and e_{ii} . Figure 2 shows low temperature C_{ii} and e_{ii} of LiTaO₃. Similar to the LiNbO₃, we only confirm monotonic increasing of C_{ii} and e_{ii} as temperature approaches to zero.

Figure 1. Low temperature elastic constants C_{ij} and piezoelectric coefficients e_{ii} of LiNbO₃.

Figure 2. Low temperature elastic constants C_{ij} and piezoelectric coefficients e_{ij} of LiTaO₃.

3-2. Einstein temperature

Temperature dependence of elastic constants of Einstein type lattice vibration model can be written in the following form

$$C_{ij}(T) = C_{ij}(0) - \frac{s}{Exp(\theta_E - T)}$$

This is called Varshni's function. Here $C_{ii}(0)$, s and $\Theta_{\rm E}$ represent zero-temperature elastic constant, lattice anharmonicity parameter and Einstein temperature, respectively. Solid curves in Figs. 1 and 2 show least square fitting of the function to the experimental results. Estimated Einstein temperatures Θ_E as well as Θ_E / Θ_D ratios are summarized in **Table II**. Here, the $\Theta_{\rm F}/\Theta_{\rm D}$ ratio of LiNbO3 varies in a small range, 0.44 to 0.63, and slightly lower than the theoretical value 0.79. On the other hand, that of LiTaO₃ varies in much wide range, 0.5 to 1.18, and some of them exceed 0.79. This result implies that in LiTaO₃ crystal phonon frequency depends significantly on vibration mode.

Table II. Einstein temperature $\Theta_{\rm E}$ and $\Theta_{\rm E}/\Theta_{\rm D}$ ratio. Here $\Theta_{\rm D}$ denotes acoustic Debye temperature estimated from low temperature C_{ij} : $\Theta_{\rm D} = 580.4$ K for LiNbO₃ and $\Theta_{\rm D} = 454.0$ K for LiTaO₃.

	LiNbO ₃		LiTaO ₃	
C_{ij}	$\Theta_{\rm E}$	$\Theta_{E}\!/\;\Theta_{D}$	$\Theta_{\rm E}$	$\Theta_{E}\!/\;\Theta_{D}$
<i>C</i> ₁₁	276.2	0.48	394.9	0.88
C_{12}	328.8	0.57	530.5	1.18
C_{13}	261.0	0.45	499.9	1.11
C_{14}	367.0	0.63	304.9	0.68
C_{33}	252.8	0.44	241.4	0.54
C_{44}	267.9	0.46	257.4	0.57
C_{66}	253.3	0.44	226.2	0.50

4. Conclusions

In summary, complete set of elastic constants C_{ij} and piezoelectric coefficients e_{ij} of LiNbO₃ and LiTaO₃ single crystals are determined by low temperature RUS experiments. Unlike previous studies to α -quartz and langasite, both the LiNbO₃ and LiTaO₃ crystals show usual elastic stiffening upon cooling and no unusual behavior has been confirmed. Einstein temperatures estimated from the $C_{ij}(T)$ curves suggest that phonon frequency is uniform in LiNbO₃ while that of LiTaO₃ depends significantly on vibration mode.

References

- 1. R. Tarumi, H. Nitta, H. Ogi and M. Hirao: Phil. Mag. **91** (2011) 2140.
- 2. R. Tarumi, K. Nakamura, H. Ogi and M. Hirao: J. Appl. Phys. **102** (2007) 113508.