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Second Harmonic Component in Focused Gaussian Beam
Propagating through a Nonuniform Sound-Speed Layer
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1. Introduction

A C-mode imaging system for the nonlinearity
parameter B/4 in a thin biological sample has
previously prsented with the finite amplitude
method using a focused Gaussian beam transmitting
through the sample [1]. Since the principle of the
measurement premisses uniform samples [2], the
nonuniform B/A contradicts the theory and thereby
is not fully reliable. By analyzing the propagation
of the focused Gaussian beam within a layer of
nonuniform sound-speed, the uncertainty of the B/A4
measurement is investigated.

2. Analytical Model

As shown in Fig.1, an inhomogeneous layer (II)
is set in a focused Gaussian beam formed in water.
The K-Z equation is satisfied even in Region II.
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where 1/c¢’=[1-0x/L+€(|z|-L)/L])/c. 6 and € model the

sound speed variation in the x and z directions,
respectively. Since the actual measurement employs
the sample with a thickness L put in front of a
reflector, the ¢ variance is assumed to be symmetric
with respect z=0. To omit the reflection at the
boundaries, the difference of the characteristic

impedance between different regions is set minimal.
In Region I, the successive approximation
solution for the fundamental and second harmonic
amplitudes P; and P, has been obtained [3].
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Fig. 1. Model of the measurement system.
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In Region II, the successive approximation of
eq.(1) leads to
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3. Sound-Speed Variation Normal to Axis

When &=0, P=Pexp[-jpi(z)0x] is assumed
taking into account the phase advance of the sound
passing through the higher sound-speed portion.
Substituting this expression in eq.(2), the followmg
equations are derived for the terms of &° and &',
respectively.
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Substituting the solution of eq.(4) for Py in eq.(5),
one obtains
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where ggz =E/[2h(z)], E=2E+jk/D, h(z)=E(z+D)-jk
and 1/6" is the characteristic radius of the source.
The solution for ¢; yields the following P;.
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where p*=x*+y?, y(z)=exp[-£5*k*V*/4D*|h(z)|*] and v=
(z+L)z(z-L+2D)/L-2(z+D)(z-L). ~ Substituting  the
above P in eq.(3), one obtains

ViP+ 4kai—86—xk ’P,
z
274 _ _
__2BR zk a 48x/2L) explk 2 +L h(z)+h(-L) ]
P [h(2)] L h(z)

x exp[ j2kg(z)p’ ] ®)

Using the paraxial approximation of the Green’s
function [4], eq.(8) is similarly solved as follows.
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By connecting the solutions for the acoustic
pressure continuously at the II-III boundary, the
pressure in Region 111 is finally derived as follows.
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where I'(z)=exp[-4£8°k*2%/|h(z)*].

Using the geometry and frequency of the actual
measurement system, the calculated P, distribution
for 6=0.05 is compared with that for =0 at z=D in
Fig. 2. Due to the non-uniform sound speed, the
beam is refracted. Although the magnitude of P,
does not change due to the refraction, the receiving
signal that is the integration Q; and O, of P, and P,
on the receiver surface can vary with § as shown in
Fig. 3. It is surmised that the B/4 is underestimated
by the half of the rate of the sound speed change in
the range equivalent to the sample thickness.
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Fig. 2. Influence of sound speed variance normal to the
axis on the beam pattern at z=D.
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Fig. 3. Change of signal amplitude due to 5. O, is the
amplitude of linearly transmitted second harmonic.

4. Sound-Speed Variation Along the Axis
When 6=0, assuming

| Pl =gy m=12), (12)

P =P

eqs.(2) and (3) are reduced to
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After solving eqs.(13) and (14), P, and P,
continuous at the II-III boundary can be derived as
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As shown by the solid line in Fig. 4, P, decreases
with the increase of the sound speed due to €. Then
the B/A is underestimated by the same rate as €.
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Fig. 4. Change of second harmonic amplitude; —
nonuniform sound-speed in the axial direction,
., ---uniform sound-speed

5. Conclusion

When the variance of 1/c’~[1-0x/L+e(|z|-L)/L]/c
is assumed, the underestimation of B/A by the rate
of e+0/2 is predicted. This error is relatively small.
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