C-Mode Observation of Nonlinearity Parameter B/A by Automatic Measurement
自動測定による非線形パラメータ B/A の C モード観察

Shigemi Saito1 and Jung-Ho Kim2 (1School of Marine Science and Technology, Tokai University; 2GW Corporation)

1. Introduction
A method to automatically measure the nonlinearity parameter B/A of a small volume sample set in the focal region of focused Gaussian beam was previously developed.$[1]$ In this paper, by shifting the focus on a thin sliced biological tissue, the measurement is repeatedly conducted many times. Using this result, the C-mode image to show nonuniform distribution of B/A is generated.

2. System and Automatic Measurement
In Fig.1, the LN transducer with an inverted polarization layer generates and detects the burst wave of fundamental ($f=18.6$ MHz) and second harmonic (2$f=37.2$ MHz). Through a solid acoustic lens with a 5 mm aperture radius, a focused Gaussian beam of 10.65 mm focal length is emanated. The $1/e$ beam width is 0.22 mm at the focus. Intermediating a 1-mm thick ring spacer, a tungsten rod and a 1-mm thick polystyrene-plate acoustic window provide a sample layer. To keep the sample temperature at 20°C, cooling water is circulated around the water couplant, and all the acoustic system of Fig.1 is placed in a fixed temperature chamber.

When the layer is empty, the reflected wave amplitude P_{1b0} from the rear surface of the window is measured. This rod position to set the surface on the focal plane is defined as $z_s=0$. After filling the layer with distilled water, the layer thickness is obtained from the time interval τ_W of two bursts reflected from the rod and the rear surface of the window as $L=c_W\tau_W/2$. When the rod is set at $z_s=-L$ so that the end is located on the focal plane, the FFT is executed for the reflected wave to obtain the nonlinear second harmonic amplitude P_{NW}. Further, when dual frequency bursts of f and 2f are radiated, the amplitudes P_{W1} and P_{W2} and the relative phase delay Φ_W of the 2f component in the wave reflected from the rod are also measured.

After filling the layer with a sample, at $z_s=0$, we measure the time interval τ_S of the bursts reflected from the rear surface of the window and the rod as well as the amplitude P_{1b} of the wave reflected from the rear surface. Then the sound speed is determined as $c=2L/\tau_S$, and the density ρ is derived from P_{1b}/P_{1b0}.$[2]$ Moving the rod to $z_s=-cL/c_W$, the amplitudes P_{S1} and P_{S2} and phase delay Φ_S in the wave reflected from the rod are similarly obtained for the dual frequency sound. The attenuation coefficients a_1 at f and a_2 at 2f are obtained from the insertion loss P_{W1}/P_{S1} and P_{W2}/P_{S2}. The magnitude of velocity dispersion $\Delta k=(\Phi_W-\Phi_S)/2L$ is also obtained. Measuring the nonlinear second harmonic P_{NS} in the wave reflected from the rod, B/A is finally determined.$[3]$ These processes are sequentially run with LabVIEW program.

3. Multipoint Measurement for Liquids
The result of the above B/A measurement repeated 256 times on a point of the layer filling water or ethylene glycol is shown in Fig.2. B/A was...

Fig.1. Cross sectional view of acoustic system.

Fig.2. Repeated measurement result for liquids.
measured with the standard deviation smaller than 1%. Each measurement takes 5 s, so that 22 minutes are taken for 256 time measurements.

Scanning the beam on the sample layer by two-dimensionally moving the x-y stage installing the lens and LN transducer with a 0.2 mm step in the extent of 3×3 mm², B/A was measured for water at 16×16=256 points. The result is shown in Fig.3 in gray scale. Due to the setting error of z_s, it can result in $\Delta k\neq 0$ even for non-dispersive liquids. To keep $2L|\Delta k|$ less than 0.01 rad, the rod surface must be parallel to the x-y plane with error less than 0.1°. Due to this difficulty, the measured B/A values are scattered as shown in Fig.3(a). Assuming $\Delta k=0$ in water, the scatter becomes small as in Fig.3(b).

4. Application to Biological Samples

Using two microtome blades set parallel with a 1.3 mm spacing, biological samples were sliced and set in the layer with saline or distilled water. The lateral size was set smaller than the inner diameter of the spacer. The measured B/A for an area of 3×3 mm² scanned by the beam is shown in Fig.4. The standard deviation of 10%, which is larger than in liquids, in the results for pig liver(a) and chicken liver(b) suggests non-uniformity of B/A. In the sample of squid mantle(c), B/A is observed to gradually change with the location.

5. Conclusion

Thin biological samples were observed with C mode display of automatically measured B/A. It was suggested that B/A is not uniform in the small area. The enhancement of the measurement speed and accuracy will be investigated hereafter.

This work was supported by a Grant-in-Aid for Scientific Research (C) 19560429. Prof. Yasuhiro Senga is thanked for invaluable discussion.

References